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Abstract 

This thesis describes a new Air Force Institute of Technology (AFIT) system used to 

find regions of interest, specifically masses, in digitized mammograms. After finding these 

regions, the second contribution of this work was to identify malignant masses. This AFIT 

system achieves a sensitivity of 92 percent for segmentation of malignant masses and a 

classification accuracy of 100 percent for the segmented malignant masses. These results are 

from the AFIT, biopsy-proven database of 272 images (12 bit, 100/im) with 36 malignant 

mass, 53 benign mass, and 183 microcalcification or healthy images. Of the 53 biopsied 

benign cases, 74 percent were rejected or correctly classified by the algorithm as benign. 

The algorithm/architecture is based on the Model Based Vision (MBV) approach which 

has never been applied to breast cancer diagnosis. The Focus of Attention (segmentation) 

Module algorithm relies on a physiologically motivated Difference of Gaussians (DoG) 

bandpass frequency filter to highlight mass-like regions in the mammogram. These regions 

were then passed through size and texture tests to reduce the number of false regions 

from 8.4 to 1.8 per image. The segmented regions were indexed (a stage of the MBV 

architecture) as to their hypothesized class: large mass or medium mass. Size, shape, 

contrast, and Laws texture features were used to develop the Prediction Module's mass 

model. Statistical and derivative-based feature saliency techniques were used to determine 

the best features. Nine features were chosen to define the model. Using this model, 

the regions were then classified using a multilayer perceptron neural network architecture 

trained with an imbalanced training set weight update algorithm to achieve the above 

results. 



Computer-Aided Diagnosis of Mammographic Masses 

/.   Introduction 

Computer pattern recognition techniques and systems have successfully been applied 

to many military and non-military problems (2, 3, 4, 5, 6). Many of these pattern recogni- 

tion systems have relied on human-visual-system-based pattern recognition principles and 

human-brain-modeled neural networks to quickly and accurately classify the patterns of 

interest with low false alarm rates (5, 6, 7, 8, 9,10). This thesis transitions military pattern 

recognition techniques to hospital use. In this medical arena, breast cancer diagnosis using 

computer pattern recognition techniques is ready to transition to general hospital use (6). 

The following algorithm presents a new approach to implementing a Computer-Aided Di- 

agnosis System (CADx) for breast cancer detection and diagnosis. 

1.1    Breast Cancer 

The National Cancer Institute estimated that in the United States in 1994 over 

182,000 women were newly diagnosed with breast cancer, with over 46,000 deaths per 

year (11). Current estimates predict the rate will increase for the foreseeable future (10, 

11, 12). The lifetime risk that a woman will develop breast cancer is 1 in 10 assuming 

the average life expectancy of 79 years, or it is 1 in 8 assuming longevity of 95 years (13). 

Breast cancer is the second leading cause of death from cancer (following lung cancer) 

for women (12). In addition to the trauma for the woman and her family, this places a 

huge strain on the radiologists, doctors, and the medical system in terms of the number of 

mammograms to diagnose, biopsies to perform, and if necessary, treatment that must be 

accomplished. 

The difficulty of this diagnosis is increased by two factors. First, as in many medical 

imaging areas, normal tissue presents a very cluttered background to the radiologist. Con- 

sidering that the vast majority of mammograms are benign, the radiologists have trouble 

seeing the low contrast cancers in the normal breast tissue. The second reason is that 

there are many other normal or benign structures in the breast that look very similar to 



the two types of cancer found in the breast: Mass lesions and microcalcifications. Mass 

lesions are lumps of tumorous tissue, but they appear very similar to glands or dense 

portions of the breast, and they are frequently hidden inside of those regions. Malignant 

microcalcifications are groupings of tiny calcium deposits associated with breast cancer. 

Frequently there are numerous non-cancerous calcification deposits lining blood vessels or 

cysts or just scattered throughout the breast. Thus, due to the low contrast and many 

similar noncancerous structures of the breast, the cancerous regions are very difficult to 

diagnose (12, 14). 

1.2 Traditional Breast Cancer Diagnosis 

Radiologist diagnosis of breast cancer using X-ray film mammograms has allowed for 

more efficient diagnosis of breast cancers at an earlier stage of development than simply 

relying on locating masses by palpation during yearly breast exams. Silverberg et al., (15) 

state that mortality has been reduced by 30 to 35 percent for those women who participate 

in yearly mammogram screening. Yet, problems persist. The overworked radiologists 

misdiagnose 10 to 30 percent of the malignant cases; two-thirds of which were evident in 

the mammogram in retrospect (6). These are called false negative diagnoses which could 

be fatal. And, of the cases sent for surgical biopsy, only 10 to 20 percent are actually 

malignant (6). The remaining 80 to 90 percent are called false positives and they have 

the effect of causing unnecessary trauma to the patient and are a burden on the medical 

system. Having two radiologists read each mammogram has been suggested, but that 

would only add to radiologist workload and fatigue. A Computer Aided breast cancer 

Diagnosis (CADx) system used as an aid to the radiologist could help to ease the workload 

by helping to correctly diagnose the missed (20 percent) malignant cases and reduce the 

number of unnecessary (85 percent) surgical biopsies. 

1.3 Computer-Aided Breast Cancer Diagnosis 

The use of the CADx system then, is to check on the radiologist's diagnosis. After 

the radiologist makes their diagnosis, the films could be placed in the computer's digitizer, 

and then the computer's diagnosis could be reviewed on the spot or at a later date.  A 



complete CADx system automatically does all the steps from receiving a film mammogram 

to outputting the diagnosis and the cancer's location. The first step is image acquisition. 

Currently, CADx systems rely on a digitized X-ray film as the input to the system ver- 

sus direct digital acquisition. While direct digital acquisition of the mammogram using 

stereotactic imaging techniques has been introduced for biopsies, only a small portion of 

the breast is imaged at any one time. For the true computer diagnosis system, a full mam- 

mogram is needed; so, in the second step of the process, the computer must automatically 

segment, or identify, Regions Of Interest (ROIs). 

This initial segmentation of the image breaks the huge (1800 x 2400 element) digitized 

mammogram into smaller (i.e. 140 x 140 element) ROIs that are easier to work with. The 

segmentation done by the Focus of Attention Module must be sensitive enough not to miss 

any cancerous regions (to eliminate the false negative diagnoses), but it cannot overload the 

highly complex matcher/classifier algorithms with too many noncancerous regions. This 

would slow down the system and potentially result in too many false positive diagnoses, 

with a huge rise in unnecessary biopsies. Once the ROIs are found from this segmentation of 

the entire X-ray film, features are extracted, and classification algorithms are implemented 

on each ROI to determine malignancy. 

These computationally intensive classification algorithms need to be able to identify 

both types of cancer: clusters of small microcalcifications and mass lesions. The algo- 

rithms use various 'features' in the ROIs as inputs. Features such as the size, shape, or 

intensity of the patterns in the ROIs, can be input as numbers into the classifier. For 

example, the higher the number of microcalcifications present in the ROI, the more likely 

that the ROI is cancerous. So, one input to a classifier could be the number of small 

pixel groupings in the ROI above a certain threshold intensity. Given the set of features, 

various classification techniques can be used for this problem, but one of the most efficient 

techniques involves neural networks. These networks are loosely patterned off the networks 

of neurons in human brain tissue (7). Information from the ROIs are fed into this neural 

network, and they efficiently provide the radiologist with the computer's analysis of the 

mammogram. To provide the radiologist with that 'second opinion', the CADx system will 



identify each region of the breast that contains suspicious tissue and provide the indicated 

cancer diagnosis. 

1.4 Statement of the Problem 

Radiologists need help identifying difficult-to-see mass lesion cancers to decrease the 

number of cancers missed and to reduce the number of unnecessary biopsies of benign 

tissue. This thesis will develop algorithms to focus the radiologist's attention on suspect 

mass-like regions of the full mammogram. It will match those regions with model-based 

predictors of normal breast tissue, benign masses, and malignant masses to provide the 

radiologist with the most probable diagnosis of each region of the mammogram. It can be 

used as an in-situ diagnostic tool or as a diagnosis review tool at a later date. 

1.5 Scope 

This CADx system was proposed as a backup to or second look for the radiologist 

to review the potentially malignant areas in the mammogram. The algorithms that define 

the CADx system were written mostly in the Matlab software environment with a few C 

routines used for better efficiency. The Focus of Attention and Matching algorithms were 

used to detect and diagnose masses from a database of 300 radiologist diagnosed and/or 

pathology-truthed mammograms from the Wright-Patterson Air Force Base (WPAFB) 

Hospital. The mammograms were digitized to 12 bits of grayscale and 100/im resolution, 

and were cropped to 2048 x 1024 pixels. 

1.6 Methodology 

A Model Based Vision (MBV) architecture (16) is used to focus the radiologist's 

attention to indexed regions of a mammogram. The initial Focus of Attention module 

implemented a Difference of Gaussians (DoG) (17, 18) human-based visual system filter 

to identify potential ROIs. After dynamically thresholding the filtered image and rank 

ordering the ROIs with an area to perimeter ratio to reduce the number of false ROIs, 

the ROIs were indexed into mass size categories. Based on the indexing label of an ROI, 



features were extracted and matched to predicted models of that type of tissue.   The 

resulting hypothesis would then be presented to the radiologist. 

1.7   Overview 

The remainder of the thesis is structured as follows: Chapter II examines breast 

cancer diagnosis in more depth, discusses relevant research, and defines MBV. Chapter 

III discusses the WPAFB hospital database. Chapter IV discusses the methodology used 

in the CADx system. Chapter V presents the results of the Focus of Attention Module, 

the Indexing Module, the Prediction Module, and the Matching Module tested using the 

WPAFB database. Chapter VI discusses the conclusions regarding the usefulness of the 

system. The database description, the medical protocol, the image acquisition process, 

and the Matlab code are provided in the appendices. 



77.   Background 

This chapter discusses the relevant contributions of other researchers in the areas 

of focusing a radiologist's attention to specific regions of a mammogram and in the area 

of feature selection and region classification. It also provides background into the Model 

Based Vision (MBV) approach to pattern recognition. The MBV approach consists of 

the Focus of Attention Module, the Indexing Module, the Prediction Module, and the 

Matching Module. 

2.1    Breast Tissue 

Numerous groups have demonstrated the feasibility of computers to analyze and 

classify different types of textures like those found in breast tissue (6). To understand 

these techniques, a discussion of breast structures and textures follows. Figures 1 and 2 

illustrate various mammograms from the WPAFB database. 

2.1.1 Normal Tissue. The parenchymal pattern of healthy breast tissue is a 

conglomeration of dense tissue, supporting ligaments, connective tissue, milk-producing 

glands and ducts, and calcium deposits. This variety of normal tissue types presents 

a highly-variable and well-structured image to the radiologist. Dense tissue, supporting 

ligaments, connective tissue and glands can by themselves or in concert obscure or mimic 

the appearance of malignant tumors. The tissue shown in Figure lc illustrates this, since 

it appears very similar to the malignant mass shown in Figure lb. In some literature, these 

natural tumor-like structures are labeled benign tumors. The remaining normal structures, 

ducts, and calcium deposits also appear on the X-ray mammogram in a manner similar 

to malignant groupings of microcalcifications. Complicating the diagnosis further is the 

overall decrease in density of the normal breast tissue with age. Thus, mammograms from 

younger women have much more structure and variability in gray-levels than those from 

older women (14). 

2.1.2 Mass Tumors. Mass lesions are lumps of tumorous tissue, but they appear 

very similar to glands, cysts, or dense portions of the breast, and they are frequently 



■aUnHr 
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Figure 1.    (a) Digitized Mammogram 1 with a Malignant Mass 
(b) Malignant Mass in Region 1 
(c) Normal Tissue in Region 2 
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Figure 2.    (a) Digitized Mammogram 2 with a Malignant Mass 
(b) Malignant Mass in Region 1 
(c) Normal Tissue in Region 2 
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hidden inside of those regions. Malignant masses typically are lower contrast with respect 

to the surrounding tissue than benign masses, but both are brighter than the surrounding 

tissue. Malignant masses have other characteristics that distinguish them from healthy 

tissue. Malignant masses occur in two basic categories: Stellate and circumscribed (12,14). 

Radiologists, in their diagnosis, first determine the margination of the mass, whether it 

is well circumscribed by a fatty (darker) halo, or spiculated (radiating tendrils from a 

central mass) and poorly defined (14). A strong halo signature, with a well-defined border 

is usually benign, but the ill-defined, spiculated masses are more likely to be cancerous. 

Seventy to Eighty percent of breast cancers are of this type (14), but as Swann points 

out (19) none of these features are absolute. Beyond margination, the determination of 

malignancy is judged by the shape, size, and pattern or texture of the suspect tissue. 

These same features can be used in computer diagnosis (20). This thesis used shape, size, 

contrast, and texture features similar to the inherent techniques radiologist's use in their 

diagnosis (20). 

2.1.3 Microcalcifications. Calcifications of some type are found in the majority of 

mammograms. Malignant microcalcifications are groupings of tiny calcium deposits that 

are associated with breast cancer, but appear very similar to non-cancerous calcification 

deposits lining blood vessels or cysts or just scattered throughout the breast that con- 

tains these malignant microcalcifications (14). Most calcifications are much brighter than 

the surrounding tissue, but their small size (100-300/jm) makes them difficult to detect. 

They are usually distinguished from benign calcifications by their margination, number 

per volume, shape, size, and distribution (20). 

All of these factors combine to make breast cancer detection and diagnosis very 

challenging. 

2.2   Breast Cancer Detection and Diagnosis 

Initially, the only way to detect breast cancer was during a breast exam when a 

palpable mass was detected. With the advent of Mammography, a radiologist could detect 

masses and even microcalcifications significantly prior to the cancer becoming palpable. 



Technology has now advanced so computers are able to aid radiologists in their diagnosis 

of breast cancer, and in the future, the X-ray film digitization process will be replaced with 

purely digital mammogram acquisition and computer-aided diagnosis. Giger (6) provides 

an extensive review of all aspects of this CADx area. 

2.3    Traditional: Radiologist Diagnosis of X-Ray Film 

Radiologist diagnosis of breast cancer using X-ray film mammography is currently 

the most effective method for decreasing the severity of breast cancer. Radiologists' correct 

diagnosis of malignant cancers range from 70 to 90 percent, but to attain these high results 

they send 4 to 5 benign masses for biopsy for every malignant mass biopsied (6). These 

problems can be attributed to several factors including poor image quality, radiologist fa- 

tigue, and human oversight. A Computer Aided breast cancer Diagnosis (CADx) system 

used as an aid to the radiologist could help to ease the workload by helping to correctly di- 

agnose the missed malignant cases and reduce the number of unnecessary surgical biopsies. 

The first step towards this full CADx system was to use computers to enhance the images 

so the radiologist could identify the differences between the cancerous and noncancerous 

regions more easily. 

Much work has been done in this area to enhance mammograms for the radiolo- 

gist (21, 22, 23, 24, 25, 1). Many techniques have used wavelets or multiresolution analysis 

to weight specific frequency decomposition scales. For example, Laine, et al., (21) im- 

plemented an approach for mammographic feature enhancement based on the image's 

multiresolution representation. These multiresolution coefficients from the dyadic, (f>, and 

hexagonal wavelet transforms were modified by nonlinear operators and then used to re- 

construct an enhanced image. This method enhanced the cancerous regions for easier 

detection. Yoshida et al., at the University of Chicago, has used the Least Asymmetric 

Daubechies' wavelets to enhance and classify microcalcifications (22). For enhancement, 

they modified the weights of certain wavelet coefficients to enhance microcalcifications and 

masses. Yoshida proceeded one step further (see Section 2.4.2) and developed a computer 

diagnosis algorithm to work on the enhanced image (22). 

10 



Another way to enhance the image is to reduce the noise effect. By using Gabor 

filters, cosine transforms, and other wavelet methods, the underlying 'noisy' texture of the 

image can be found and then subtracted from the original image (23). Dhawan, et al., used 

an adaptive filter based on the local contrast in the image (24, 25). It seemed to increase 

the contrast in the image without increasing the noise. 

One final researcher, Lai, et al. (1), used median filtering and selective averaging to 

enhance the mammograms, but their enhancement attempts were strictly for computer 

diagnosis (Section 2.4.2). The trend is continuing to place the emphasis on computer 

diagnosis rather than just mammographic enhancement for radiologists. 

2.4    CADx: Radiologist With Computer-Aided Diagnosis 

Research into computer-aided breast cancer diagnosis has been going on since 1979 (26), 

with many individuals and groups contributing techniques to solve this problem. Since the 

properties of masses and microcalcifications are so different, the techniques used to detect 

them are very different too. Various techniques are described below for each area. 

2.4.I Current Research - Microcalcifications. Microcalcification detection and 

classification is a challenging job given the fact that the microcalcifications are generally 

only a few pixels in size for a 100/xm resolution image and not even visible at lower res- 

olutions. To complicate matters, the mammograms contain severe background noise that 

is comparable to the signature of the microcalcifications. Thus most of the literature has 

focused on classifying microcalcifications in hand-segmented ROIs rather than computer 

segmenting the image, because computer segmentation schemes generally result in a high 

number of false ROIs. 

Recent work by Chitre and Dhawan used second-order gray level histogram-based 

features for microcalcification classification in 100 difficult-to-diagnose cases (160/xm reso- 

lution). They used entropy, contrast, and angular second moment based features, among 

others, in a neural network architecture for a 73 percent true-positive rate and a 35 percent 

false-positive rate (10, 27, 28, 29, 30). 

11 



Capt Kocur's Computer-Aided Breast Cancer Diagnosis thesis work in 1994 (9, 31) 

built on Dhawan and Chitre's work but explored many different techniques for and aspects 

of microcalcification classification. Her thesis investigated feature extraction and image 

classification of hard-to-detect microcalcifications in 94 digitized mammograms (160^m 

resolution). She implemented a variety of features and feature saliency techniques within 

a neural network classification architecture. The angular second moment features based 

on the second-order gray-level histogram obtained 62 percent correct classification. The 

Karhunen-Loeve Transform features used to do an eigenvector coordinate transformation to 

obtain the eigenmass coefficients achieved 65 percent correct classification. Using biorthog- 

onal wavelet features, the accuracy was increased from 74 percent to 88 percent after per- 

forming some feature selection and reduction techniques and after using neural network 

decision boundaries (9, 31). 

As mentioned before, Yoshida et al., used the Least Asymmetric Daubechies' wavelets 

for microcalcification enhancement (22). He then used global and local thresholding, mor- 

phological erosion, and texture analysis on the enhanced image to achieve 85 percent 

correct classification but at a cost of 5 false positives per image (22). 

Many other researchers have tried various approaches to detect and classify microcal- 

cifications, and the best summary of these techniques is found in Giger's Computer-aided 

Diagnosis article (6). Current research at the Air Force Institute of Technology (32, 33) 

uses wavelets and morphological digital image processing to detect/diagnose microcalcifi- 

cations. 

2.4.2 Current Research - Masses. While, in general, the literature on microcalci- 

fications focused on classification, the literature on masses includes the segmentation and 

classification aspects of the problem. 

Brzakovic, et al., detected and classified large masses in 25 mammograms using 

multiresolution analysis combined with fuzzy pyramid linking for the segmentation step, 

and Bayes classifiers based on the shape and intensity characteristics of the masses for 

the classification step (34). Brzakovic trained on ten images and then tested using all 25 

images. Of the 20 tumors present, they missed two malignant tumors and misclassified one 
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Figure 3. Lai's template for matching tumors of five pixels in diameter (1). 
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Figure 4. One dimensional plot of Lai's template. 

benign tumor as malignant, but the full mammograms were only digitized at low resolution 

in 256x256 arrays. 

Lai, et al., worked from selective median filtered images to attempt to segment and 

classify circumscribed masses (1). They used template matching to segment the image 

and histogram tests to classify the masses. An example of one of their 12 templates with 

a one dimensional plot of the template are shown in Figures 3 and 4. It relies on the 

three characteristics of tumors: brightness contrast, uniform density, and circular shape. 

On a database of 17 images they achieved 100 percent true-positive detection with 1.7 

false-positives per image. 
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Figure 5. Kegelmeyer's four Laws kernels: (a) 15s5 (b) 15e5 (c) r5r5 (d) e5s5 

Kegelmeyer used a local oriented edge analysis algorithm, Laws texture analysis, and 

a binary decision tree classification algorithm to detect and classify stellate lesions. The 

binary decision tree determines the probability of malignancy of each pixel based on the 

edge and texture analysis processes (35, 36, 37). The four Laws texture features Kegelmeyer 

used were derived from the convolution of the I5s5, 15e5, r5r5, and e5s5 kernels with the 

image. The Kernels are shown in Figure 5, but a more detailed description is in Section 4.3. 

He tested the algorithm on a portion of the University of South Florida database (200 pm 

resolution). Out of one hundred images, he used their twelve stellate lesion examples and 

their fifty normal images. The results were 100 percent probability of detection with only 

0.27 false alarms per image (36). In a second test conducted to determine the increased 

performance of radiologists when shown the CADx results, the algorithm detected 66 of 68 

spiculated lesions, correctly classified 82 percent of the spiculated lesions, and had 0.28 false 

positives per image on a database of 84 cases (4 views per case) at 240 /im resolution (37). 

Wei et. al., from the University of Michigan used multiresolution texture analysis to 

differentiate masses from normal tissue (38). The texture features were derived from the 

spatial gray level dependencies (angular second moment) of the image and of the wavelet 

decomposition images. They constructed their database of 672 ROIs by hand-segmenting 

four ROIs from each of 168 images. Thus, each image had one tumor and three normal 
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tissue ROIs represented in the database. They achieved a 95 percent true-positive fraction 

with a false-positive fraction of 55 percent. Since their database consisted of one mass 

(malignant or benign) and three normal tissue ROIs from each mammogram, these results 

translate to over two out of three or four benign regions per mammogram being false- 

positives (38). 

Giger and Yin, et. al., from the University of Chicago, have worked towards imple- 

menting a complete CADx system to identify suspect regions of mammograms for both 

microcalcifications and masses (6, 39, 40, 41, 42). Their technique for segmentation of 

masses is based on a comparison of the right and left mammograms of the same view (CC 

or MLO). Both mammographic views show a similar pattern and symmetry for normal 

parenchymal tissue, but for most cancer cases, the cancer only appears in one breast. Us- 

ing an autonomous, non-linear, bi-lateral subtraction technique to eliminate most of the 

normal tissue results in unusual masses being highlighted in either breast. Radiologists 

regularly compare the opposing mammographic views in their diagnosis, and Giger and 

Yin have found this idea to be superior to their single image processing techniques (41). 

When tested on 77 patient cases (308 mammograms), they achieved 91 percent sensitivity 

with a false-positive rate of 6.5 per image (42). In earlier tests, on a smaller subset of the 

data (46 pairs of mammograms), they achieved 95 percent sensitivity with a false-positive 

rate of 3 per image (40). The autonomous classification scheme is based on the spiculation 

of the masses detected by the segmenter. They used a number of morphological and aver- 

aging steps to determine the area and boundary of the masses at the different steps in their 

morphological process. Comparing the features at each of these steps yielded a 97 percent 

true-positive rate and a 79 percent false positive rate on a database of 50 masses. Their 

full CADx system combines these mass algorithms with the microcalcification algorithms, 

and it is currently in clinical testing. 

Figure 6 summarizes the mass lesion results of the authors mentioned above. Kegelmeyer's 

and Yin's second entry and Giger's entry are the most relevant results to this thesis. 
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Researcher Database False Alarms 
per Image 

True Positive 
Fraction 

False Positive 
Fraction 

Citation 

Brzakovic 25 0.8 0.8 na (34) 

Lai 17 1.7 1.0 na (1) 
Kegelmeyer 1 62 0.27 1.0 na (36) 

Kegelmeyer 2* 340 0.28 0.97 na (37) 

Wei 168 ROIs >2 0.95 0.55 (38) 

Yinl 92 3 0.95 na (40) 

Yin 2* 308 6.5 0.91 na (38) 

Giger* 50 ROIs na 0.95 0.79 (38) 

Figure 6.    Summary of the Results for the Detection of Masses in Mammograms. 
* The Most Relevant to This Work, na = not available/applicable. 

2.5    The Model Based Vision CADx Process 

The Model Based Vision (MBV) approach consists of the Focus of Attention Module 

(FOA), the Indexing Module, the Prediction Module, the Feature Selection Module and the 

Matching Module (16). The FOA module is similar to traditional segmentation, the Pre- 

diction Module and Feature Selection Module are similar to feature extraction/selection, 

and the Matching module is similar to traditional classification. Figure 7 shows the archi- 

tecture. 

2.5.1 Focus of Attention: Segmentation. The Focus of Attention (FOA) module 

identifies regions in an image that require more attention. It is an information reduction 

step that highlights regions in the mammogram that a radiologist would most likely spend 

more time on during their diagnosis. It boils down to the art of identifying the regions of 

interest in an image for the application of classifier algorithms. For example, in a digitized 

mammogram, the segmenter's job would be to determine if there were suspicious patterns 

or objects in the mammogram that required further study. The regions that contained the 

suspicious Regions Of Interest (ROIs) would be passed to the feature extraction algorithms. 

There are many ways to do this, but the point is that, in some way, an 1,800 x 2,400 element 

digital mammogram is boiled down to a few small ROIs (140 x 140 elements in this case) 

for closer study. 
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Figure 7. The Model-Based Vision Flow Diagram 

2.6 Indexing 

The Indexing module receives the ROIs from the FOA module and separates the ROIs 

into categories. It does this by applying various hypothesis tests on the ROIs to make a 

high level prediction of the type of object in an ROI. Example demarcations for hypothesis 

generation could be based on the size or shape of the object in the ROI. Continuing with 

the size-based hypothesis, the features extracted from and the matching model used for 

a small object could be different than those used for a large object. Thus the features, 

models, and hypothesis tests are tailored for specifically indexed ROIs. 

2.7 Prediction / Feature Selection 

The Prediction Module develops a model of the tissue types the indexer specifies; 

in this case, different sized malignant masses. It builds the model by extracting the best 

features that define the characteristics of a malignant mass. A subset of the available data, 

the 'training' set is used to develop this model, while the rest of the data is used to test 

the model. The job of the feature extractor then is to take the information present in 

an individual ROI and reduce it to a few pieces of discriminantly useful information that 
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can be fed into a matching or classification algorithm: in this case a neural network. For 

example, the ROI consists of 140 x 140 pixels with 12 bits of grayscale. An energy texture 

feature extractor finds the energy in the various images after they have been convolved with 

various texture kernels. Some features may be correlated with each other (redundant) or 

useless. Features whose class probability density functions (pdfs) having the least overlap 

will be the most discriminantly useful features. The goal is to find the fewest number of 

best features that allow the classifier to separate the data into the proper classes. 

There are a number of reasons to reduce the number of features ultimately used for 

developing the model. The first is that the matching/classification will be much faster 

with fewer features. The second, and more important reason, is to ensure the model will 

generalize to work for all cases in the clinical environment. There are a number of rules 

used to determine the maximum number of features one should use. These rules are based 

on a neural network classification architecture, which is used in the Matching/Classification 

Module. Foley's rule (7) states that there needs to be three times the number of training 

samples in each class than there are features, while Uncle Bernie's rule (7) states that the 

total number of training samples should be ten times the number of connections used in the 

neural network architecture. Thus, depending on the amount of data, a certain maximum 

number of features needs to be found to develop the model. 

There are a number of techniques available to determine these best features. The 

most basic is the probability of error metric. This technique picks the most relevant 

features by the overlap of their class conditional probability density functions (pdfs). The 

less overlap, the higher the discriminant power of the feature. The second method is called 

the f-ratio. For each feature, this method compares the distance between the means of 

the classes and their standard deviations. The larger the difference between the means 

and the smaller the standard deviations, the higher the f-ratio and the higher the feature's 

saliency. The equation from Parson's text (43) is shown below: 

/,.           \ßclassl       ßclass2) /-. \ 
- ratio = —2 T~2  W 

aclassl "+" aclass2 

A third method, developed by Steppe (44, 45) eliminates features one by one that 

have the least positive effect on the classification accuracy of the remaining features. The 
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exhaustive algorithm trains ten neural networks for each feature selection level, and main- 

tains the overall classification results for each level. A certain subset of features will yield 

the best results for this method. Lee and Langrebe (46, 47) developed a fourth method 

which only uses the correctly classified samples output from a Gaussian or Parzen Window 

classifier. The decision boundary is approximated using the normal vector to the decision 

boundary along the vectors connecting the closest samples on either side of the decision 

boundary. In this manner the eigenvectors with the highest magnitude identify the most 

relevant features. The last technique, developed by Ruck (48, 49), examines the derivative 

of the output of a trained neural network with respect to each training sample's features. 

The features that have the biggest effect on the classification output will have the high- 

est derivative. Each feature saliency method mentioned will yield similar results. Steppe 

seems to provide the most exhaustive results, but for faster analysis, the Ruck method is 

suitable for most applications. 

While the Prediction Module is used to select the features for the models of indexed 

tissue types, the Feature Selection Module selects those same features for each sample. 

These features from each Module are then compared to determine how closely any given 

sample matches the models of the tissue types. 

2.8    Matching / Classification 

2.8.1 Traditional. Many classification algorithms or discriminant functions can 

be applied to the pattern recognition problem. For details on these algorithms, consult 

Duda and Hart's book (3) or Fukunaga's book (2) on pattern recognition. Bayesian classi- 

fiers minimize the probability of error for a given set of features. They provide the optimum 

solution since, they place the class decision boundary at the point of least overlap of the 

pdfs. But these classification algorithms are too computationally complex to use on the 

entire image. For example, the Gaussian classifier uses Gaussian distributions about each 

class over the entire feature space. Then the Bayesian discriminant function is calculated 

from the class means, variances, and covariances. Another type of classifier, the non- 

parametric KNN classifier, identifies the test sample features with the K nearest training 

sample's features and determines the class by voting on which class's features are closest. 
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Finally, neural networks can approximate the results of an optimum Bayes classifier by 

approximating the Bayes optimal discriminant function (50). Once the neural network is 

trained, the testing and classifying are potentially much quicker than for the conventional 

Bayes classifiers. 

2.8.2 Model-Based Matching. Model-Based classification computes a probability 

that the test sample's features match the features generated from a model. Given a high 

enough correlation, the sample will be classified as a certain class with a stated probability. 

If the correlation of the features is not high enough, the hypothesis generated in the 

indexing step may be revised to try to match the sample to another class, or to change a 

parameter in the model to better match the sample. For example, given a tank template 

for an infrared image, the aspect or orientation of the tank hypothesized and then used to 

generate the model signature may not precisely match the actual tank's orientation. The 

hypothesis then might be changed and the model tweaked to better match the sample. 

2.8.3 Imbalanced Training Sets. For this thesis, a modified multilayer perceptron 

neural network classifier was used to classify the samples versus, strictly matching them to 

the model. The concepts are similar, but the actual techniques are different. One method 

compares samples to a model, while the other classifies samples by which side of the learned 

decision boundary the samples fall upon. For the neural network case, it is important to 

note that in practice, the number of false ROIs and benign cases is far greater than the 

number of malignant cases. This results in imbalanced malignant and benign training sets. 

Since the network tries to reduce the overall mean square error for all samples, this means 

that it usually classifies the dominant class samples correctly at the expense of the smaller 

class's samples. In practice, correct malignant classification (the smaller class) is more 

critical than benign classification (the dominant class). Therefore, modifications to the 

standard neural network learning rule were used to reduce the impact of the imbalanced 

training set problem. The method used was developed by Anand, et al. (5). He trained 

the network in batch mode (sigmoidal activations) but with the results separated into the 

two classes. Then the bisector of the two error gradients was used to determine the weight 

update for each epoch.   The effect is to force the mean square error of both classes to 
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zero. The network has a single clamped output node, but can have any number of hidden 

nodes. The only drawback is that the batch technique tends to get stuck in local minima, 

but by carefully selecting the initial starting point, the network will converge to a suitable 

minimum error. Even with the drawback, the training can be tailored to equally balance 

the two error gradients or weight one more heavily than the other with the result of much 

better classification versus the standard approach. 

2.9   Background Summary 

While microcalcification detection and classification are required for a complete 

CADx system, the focus of this research is on mass detection and classification. Ref- 

erencing Figure 6, Kegelmeyer's second set of results, and Yin's second set of results are 

the most promising results for segmentation performance comparison. They were both 

done on large, representative databases. Contrasting Kegelmeyer's binary decision tree 

algorithm, and Yin's standard segmentation approach, this thesis uses the model based 

vision architecture to focus the radiologist's attention on mammographic regions, and in 

addition, it provides the most probable hypothesis. 
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III.   Database 

The 72 medical cases used for this study were obtained using the Medical Diagnos- 

tic Imaging Support (MDIS) system at the Wright-Patterson Air Force Base (WPAFB) 

Hospital located at WPAFB, Ohio. In most cases, all four screening views were digitized 

for a total of 284 images. They were digitized according to a signed medical protocol with 

the WPAFB hospital (Appendix B). The protocol was necessary to acquire the images. 

The MDIS system is described in Section 3.1 and the malignant and benign biopsied mass 

images used in the database are listed in Appendix A. 

3.1 MDIS System 

The MDIS system includes a film digitization and archival storage system in use at 

the WPAFB hospital. The most important MDIS module for this thesis was the Lumiscan 

200 automatic laser film digitizer made by Lumisys. The automatic film handler holds up 

to 70 films from sizes 8"xl0" to 14"xl7". The resolution of the system varies from 100/xm 

to 420/im based on the film size. (The mammograms were digitized at 100 /xm.) Each pixel 

is assigned a value equal to 1000 times the film's Optical Density (OD). The digitizer's 

density capability ranges from 0 to 3.5 OD at 0.001 OD resolution. This translates to a 

possible grayscale range of 0 to 3500 for twelve bits of grayscale resolution. The density 

resolution and precision are linear functions. The data are permanently stored on magneto- 

optical platters at the hospital, which are easily accessed by the MDIS system. Thus, the 

MDIS system provides an optimal system for mammogram digitization and storage. 

3.2 Database Management 

At the 100/mi resolution, each 8" x 10" image varied from 1500 to 1800 columns by 

2400 to 2500 rows with 12 bit grayscale. To make the database uniform and manageable, 

and to protect the patients' privacy, the tissue areas were hand-cropped from the patient 

label portion of the film resulting in a 1024x2048 array. In most cases, no tissue shown on 

the X-ray film was lost, and if tissue had to be cropped out, it was taken from the chest 

wall side of the image. One hundred pixels corresponds to a centimeter on the X-ray film; 
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so, the images are 20.48cm by 10.24cm. The image files were approximately 4 MB each, 

defining a total of storage capacity requirement of 1.14 GB. Thus, only relevant images 

were retained on the hard drive while the non-biopsied images were stored on tape backup. 

For this thesis' purposes, the database was split into five groups of images: 

(1) Malignant Mass Training Set 10 cases (18 images) 

(2) Malignant Mass Testing Set 9 cases (18 images) 

(3) Malignant Mass Evaluation Set 6 cases (12 images) 

(4) Benign Mass Set 28 cases (53 images) 

(5) Non-Mass Set 19 cases (183 images) 

The Malignant Mass Training, Testing, and Evaluation Sets each contained a biopsy- 

proven malignant mass in each image. The Training Set was used to define and develop 

the algorithm, and the Testing Set was then used to evaluate and modify the algorithm. 

Finally, the Evaluation Set was used to project how well the algorithm generalized for all 

clinical tests. The Evaluation Set's role in this effort was very important in determining 

how well the algorithm worked on images the algorithm had not previously seen. Using 

the Evaluation Set is the only way to determine the extensibility of these techniques to the 

clinical environment; since given enough time, any algorithm can be fine-tuned to do well on 

the training data. The Benign Mass Set consisted of biopsy-referred masses whose diagnosis 

was benign. The Benign Set would test the algorithm's ability to reduce the number of 

unnecessary biopsies. The size distribution of masses for the four datasets is shown in 

Figure 8. The images in the Non-Mass Set (5) either contained benign microcalcifications, 

malignant microcalcifications, or were one of the other mammographic views of a breast 

that had not been biopsied. 

3.3    Case Selection 

Records were selected from the WPAFBH pathology record book by a trained radi- 

ologist, and all cases selected were biopsied with a pathological diagnosis of the tissue. The 

original radiologist's diagnosis and the pathology of the cases were recorded with a detailed 
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description of the location and characteristics of the tissue biopsied. The diameter of the 

mass or the number of microcalcifications were recorded. All four mammographic views 

(right and left craniocaudal and right and left mediolateral oblique) from the screening 

session when the initial diagnosis was made were digitized. 

The composition and number of cases present in a database can greatly effect the 

development of the algorithm and the experimental outcomes (51). Nishikawa, et al., used 

a database of 90 images and compared the performance of his classifier on the 'easy' cases 

versus the 'hard' cases. Results varied from 100 percent to 26 percent true-positive scores 

for the hard versus easy cases. In fact, while just switching 10 hard cases into the easy case 

subset, the 100 percent correct was reduced to 74 percent correct (51). Thus, no pruning 

of the records from the WPAFBH record book was done for this research. As many cases 

as possible were selected for this study to ensure a good cross-section of typical masses 

and microcalcification cases. 

For this thesis, the entire database could not be used to develop the algorithms. Since 

the database contained both malignant and benign mass and microcalcification examples 

with the opposing mammographic views, and since the database was being acquired at 

the same time the methodology was being developed, the algorithms were developed on a 

limited subset of the entire database. The majority of the development of the algorithm in 

the next chapter was done using only the Malignant Mass Training Set which comprised 

just 6 percent of the entire database. 
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IV.   Methodology 

This chapter describes the Model Based Vision (MBV) techniques developed and the 

algorithms used to implement the Focus of Attention module's segmentation, the Indexing 

Module's labeling criteria, the Prediction Module's feature selection, and the Matching 

Module's classification of mass lesions in the mammograms. 

4.1    Focus of Attention (Segmentation) 

Masses of interest all have the general characteristic that they are of a higher bright- 

ness than the surrounding tissue, but in many cases the difference of gray levels separating 

a mass from the surrounding tissue is not large. In addition, they are generally not the 

brightest region in the image; networks of glands and ducts often are brighter. The differ- 

ence between these mass regions and the other high intensity regions is that the networks 

of glands and ducts are often interlaced to present a large area of higher intensity. Thus, 

a frequency filter that would find smaller, distinct mass-like structures was developed. 

The FOA Module process is shown in the flow diagram (Figure 9). Each step is 

described in the following sections. 

4.1.1 Difference of Gaussians (DoG) Filter. There are many filtering techniques 

that can pass certain frequency ranges, but the Difference of Gaussians (DoG) (52) and 

Laplacian of Gaussian (LoG) (17) bandpass operations have been linked to the way humans 

preprocess an image (18, 53, 54). Since human diagnosis has been the best technique 

available, there is a good basis for modeling this approach. The DoG bandpass filter was 

the one chosen for this research since it is energy normalized and it has a broader frequency 

bandpass than the LoG filter. This allows it to respond to a wider range of mass sizes, but 

it also passes through more false ROIs that need to be dealt with in the next step in the 

MBV process. 

The DoG filter is constructed by subtracting two Gaussians of different standard 

deviation, a, and then taking the Fourier Transform of the image. Filtering an image with 

this result is analogous to convolving the DoG with the image. The DoG convolutional 

kernel and the analogous filter used for this research are shown in Figure 10. Figure 10a 
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shows the spatial size of the convolution kernel, while Figure 10b shows the one-dimensional 

detail view of the kernel. The process as used in the research is similar to the matched filter 

implemented by Lai, et al., (1). The DoG kernel is a matched filter for structures of about 

100 pixels (1cm) in diameter, similar to the tumors shown in Figures lb and 2b. Notice 

how the DoG has the positive and negative aspects that Lai's template has in Figure 4, 

but the DoG is energy normalized and has a more gradual response. 

The derivation for frequency response and the peak response follows. Using the 

Gaussian form shown in Equation 2 ensures that the DoG is energy normalized so that the 

energy above and below the axis is equal. 

gauss(x,y) = -—re    »»2 (2) 

Subtracting two Gaussians of different a yields: 

1 -(*2+v2) 1 -(*2+v2) 

^.»j-äsr^-Fsr^ <3) 

The ID and 2D DoG plots for ax = 20 and <r2 = 50 are shown in Figure 10a and b. Us- 

ing Gaskill's (55) definition of a Gaussian (gauss(x) = e-ir(*)a), and his Fourier transform 

relationship (gaus(D <==> \b\gaus(bfx)), the resulting DoG frequency filter becomes, 

filter(fx, fy) = e-vW'itf+tf) - e-^'^+tf) (4) 

The filter is shown in Figure 10c. This view is the cutout from the entire frequency 

plot. The maximum spatial frequency is 1024 cycles or 512 cycles depending on the axis. 

Setting the derivative of Equation 4 equal to zero and solving for fx or fy yields, 

/. = (   *   -£3^)* (5) 

This equation has a similar form as found in reference (52). The difference lies in 

the definition of the Gaussian and its Fourier transform relationship. The peak response 
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of the filter, fx, for ax = 20 and <J2 = 50 from Equation 5 is 0.013 cycles per image which 

when multiplied by the maximum frequency bin represented in the matrix, 1024, yields 

13.5 bin. Thus, the peak frequency response is between the 13th and 14th frequency bins 

along the row frequency axis. Since the matrix is not square (2048x1024) the peak response 

for the column frequency axis is 6.75 frequency bins from DC. For this research, the filter 

was constructed in a 512x512 array and then padded with zeros to the correct dimensions 

before Fourier transformation. The magnitude of the result was used. 

4.1.2 Image Preparation for DoG Implementation. Since the DoG filter convolves 

the Kernel with the entire image, some preprocessing steps were taken to eliminate some 

unwanted artifacts. The three main sources of the artifacts were the transitions from the 

breast tissue to the dark background, the X-ray film markers used for film identification, 

and the edge effects due to the circular convolutional nature of the Fourier Transform. 

An additional unwanted outcome was the sensitivity to the grayscale changes between the 

chest wall and breast tissue, but that outcome was not as critical as the others. 

4.1.2.1 Preprocessing. The first preprocessing step to remove the artifacts 

was a thresholding step used to identify breast tissue vs background X-ray pixels. Due 

to the calibration of the X-ray machines and the X-ray films used in this database, the 

brightest gray level that could, in general, be attributed to background and not breast 

tissue was 1500. Raising the threshold higher caused breast tissue that was in the interior 

of the breast to be included in the mask. Thus a mask was created of all pixels with a gray 

level < 1500 (see Figure lib). 

The next step was to eliminate or at least reduce the edge transition from the breast 

tissue to the background by filling in the background pixels with higher grayscale values 

comparable to the breast tissue's grayscale. Figure 13a-d shows the wide variety of horizon- 

tal transitions that occur in mammograms. As shown in the detail views of Figure 13a-d, 

plots e-h show that in general, the transitions occurred over 75 to 100 columns from the 

edge detected by the mask. In other words, the relevant breast tissue is approximately 75 

to 100 columns to the left of the mask edge for any particular row (Figure 13e-h).  This 
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Figure 11.     (a) Figure la Reproduced with Malignant Mass Identified 
(b) Mask of Grayscale Pixel Values Less Than 1500 
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transition region includes the skin tissue of the mammogram which is not needed for the 

diagnosis. 

To simplify the fill process, the replacement of background pixels was done row by 

row, left to right, with all mammograms oriented with the chest wall on the left of the 

image. So as the algorithm scanned a row of the mask, it would detect the first 'on' pixel 

in the mask and identify the pixel position 55 columns to the left as the 'edge pixel'. As 

discussed below, it would then fill in all pixels from the edge pixel all the way to the 

right edge of the image. This would have two major effects: It would reduce the grayscale 

transition without eliminating relevant edge features and structures, and it would eliminate 

the radiologist film markers on the image. 

Two types of grayscale fills were attempted. The first technique filled each row with 

a constant gray level based on the edge pixel's value in the row. This reduced the breast 

to background edge effect, but caused a mismatch between the left and right edges of 

the mammogram. This artificial edge caused artifacts in the filtered image due to the 

periodic properties of the Fourier Transform. (Note: This artifact was even stronger prior 

to the fill.) The technique implemented to reduce this artifact was a gradient method. 

The difference in gray levels between the edge pixel and the first pixel in the row was 

found. The algorithm then implemented a linear gradient fill that caused the gray levels 

to match both end pixel grayscale values and decrease (or increase) linearly between them. 

Figure 12 shows the full filled-in image with specific rows identified. Figure 13 shows the 

plots of the rows shown in Figure 12 before application of the fill algorithm, and Figure 14 

shows the row plots after the application of the fill algorithm. The grayscale transitions 

were dramatically reduced, while the relevant breast tissue was retained. 

The DoG results for the unprocessed and preprocessed images are shown in Figure 15. 

The tumor region is located in the white box in the figure. (Reference Region 1 in Figure la 

to see the actual tumor.) Leaving the transition unchanged (no fill algorithm) caused 

tumors even relatively far from the edge to be obscured by the breast tissue to background 

transition and the image edge effect Figure 15a. Figure 15b shows the results of the 

DoG filter applied to the preprocessed, gradient-filled image. Although the fill algorithm 

generated some artifacts in the fill region, the edge transition artifact was greatly reduced 
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Figure 12. (a) Image From Figure 11a with Gradient Fill. 
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and the tumor is much more visible. In addition, the left and right edge effect was greatly 

diminished, so now the chest wall to breast tissue transition is more visible too. With some 

minimal post-processing, the remainder of the artifacts could be removed. 

4.1.2.2 Postprocessing. Once the fill algorithm was implemented, and the 

DoG filter was passed over the image, the resulting image shown in Figure 15b still con- 

tained some artifacts of the process. Two candidate items for postprocessing are of note 

in this image. First, the DoG filter was sensitive to the vertical mismatch in gray levels 

from the top to the bottom of the image, and second, there were pseudo-tumors in the 

filled-in area of the image. In addition to some normal tissue, the real malignant tumor 

was highlighted in the filtered image (see the white box in the figure), but the gray level 

mismatch from the top to the bottom of the image dominates and masks the items of inter- 

est. In some images there was no mismatch, but in others, the real malignant tumor was 

completely obscured due to the high intensity of the top to bottom edge effect. No struc- 

tures of interest were located within the top or bottom 100 rows (out of 2048 total rows), 

so these rows were masked out. In addition the threshold mask used in the preprocessing 

step (Figure lib) was used to eliminate any pseudo-masses located in the fill region. These 

pseudo-masses were due to the vertical grayscale mismatches present from the horizontal 

gradient fill algorithm. The resulting, postprocessed image is shown in Figure 16a. 

With the result in Figure 16a, the Focus of Attention Module does one more step 

before passing the filtered image to the Indexing Module. A dynamic threshold of the 

image was implemented to select the pixels with grayscale values greater than 50 percent 

of the maximum grayscale value in the postprocessed matrix. The binary image contained 

groupings of pixels that corresponded to the ROIs the FOA Module was tasked to identify. 

These ROIs in the binary image were passed to the Indexing Module for the next stage of 

analysis. Most of the binary regions selected corresponded to reasonable regions that one 

would like the FOA Module to select. 
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Figure 15.     (a) DoG Filter Results on the Unpreprocessed Image Shown in Figure 11a 
(b) DoG Filter Results on the Preprocessed Image Shown in Figure 11a. 
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Figure 16.     (a) DoG Filter Results on the Post-processed Image Shown in Figure 11a 
(b) The Binary Regions Selected. The Arrow Shows the Malignant Region. 
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4-2   Indexing 

Using the binary image from the FOA Module and the original grayscale image, the 

Indexing Module did two tasks: It labeled each grouping of pixels in the binary image into 

a discreet set of categories, and it subjected each grouping to a set of tests to reduce the 

number of non-malignant ROIs. A flow diagram is shown in Figure 17. Each process is 

described in the following sections. 

4.2.1 Labeling. The binary image passed to the Indexing Module from the FOA 

Module generally contained a number of groupings of pixels (ROIs). Each of these ROIs in 

the binary image were categorized into five indexes: Edge ROI, Small ROI, Medium ROI, 

Large ROI, and Extra Large ROI. The Edge ROI label was created to eliminate any small 

groupings of pixels close to the chest wall side of the mammogram. Any pixel groupings 

that extended less than 60 pixels into the image were labeled as Edge ROIs. Since most 

detectable masses are greater than 6.0mm in diameter and occur in the interior of the 

breast, all Edge ROIs were considered to be artifacts of the DoG process. All other ROIs 

were passed through a minimum bounding box area to perimeter ratio test to determine 

their label. The thresholds between the categories were box to perimeter ratios of 3.0, 36, 

and 50. The value of the ratio corresponds to the size and complexity of the ROI. Small 

ROIs (ratios < 3.0) and Extra Large ROIs (ratios > 50) were eliminated since no malignant 

masses fell in these ranges. Considering the two remaining index labels, the Large ROI 

index (36 < ratios < 50) was designed to detect masses greater than 2 cm in diameter, 

while the Medium ROI was designed to detect masses from 0.5 cm to 2.0 cm in diameter. 

Most masses fell into the Medium ROI indexing label. Since, there were only two Large 

ROI examples, and since large masses are usually easily diagnosed, nothing further was 

done with the Large ROIs besides noting if the malignant mass was detected and noting 

the number of non-malignant ROIs detected. This 'ratio' test used to eliminate undesired 

ROIs and label the medium and large masses was the first of a number of tests used to 

reduce the number false ROIs. At this point the Medium ROIs were hypothesized to be 

0.5 cm to 2.0 cm diameter masses (malignant or benign), or background tissue. 
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4-2.2 Testing. This section can best be described as a loop back to the FOA 

Module, but this time based on the indexed ROIs. Although features are selected, it is in- 

herently not a feature selection process, but rather a reduction of false ROIs/segmentation 

process. The intent is to eliminate all background tissue ROIs, and be left with only malig- 

nant and benign masses. The following tests: ranked-ratio, area, contrast, and circularity 

were all implemented only on the Medium ROIs that passed the ratio test. 

For the ranked-ratio test the ratios used in the labeling step were ranked in descending 

order. A maximum of seven ROIs could be retained. This criteria passed all the malignant 

ROIs while eliminating many of the false ROIs. The images had between 1 and 22 ROIs, 

but the malignant ROI, if found, always had a ratio that put it in the top seven ROIs. For 

the example shown in Figure 16b, this criteria had no effect. 

The next three tests conducted are a variation of the false alarm reduction process 

used by Yin (42). Yin segmented a suspicious region from the image and then found the 

peak pixel value in that region. A region was morphologically grown from that point until 

the mask only encompassed pixels that were within 97 percent of the peak pixel's value. He 

then did a minimum/maximum area test, a circularity test, and a normalized contrast test. 

The morphological process and the contrast test used in this thesis are unique, but the 

area and circularity tests were very similar in idea to Yin's work. The tests are described 

below. 

The tests were conducted on ROIs extracted from the original image. The 140x140 

ROIs were extracted based upon the centers of the ROIs passed through the ranked- 

ratio test (Figure 18a). The tests required a binary mask representing the shape of the 

hypothesized mass in the ROI. To create the mask, the top 15 percent (3000) of the 

pixels in the image's histogram were used as a baseline (Figure 18b). All of the following 

morphological operations were done using the standard Matlab 3x3 square kernels. A 

morphological erode was implemented to eliminate any small pixel clusters. Since true 

masses should be centered in the ROI, any pixel groupings close to the image edge were 

set to zero (Figure 18c). The masses also typically had a large variation in grayscale values 

in their interiors, so two morphological dilations and a morphological close were used to 
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connect and fill close but disjoint regions.   The 'on' portions of this mask (Figure 18d) 

provided the basis for the following tests and the feature extraction algorithm. 

The three tests (area, contrast, and circularity) were each based on malignant mass vs 

background tissue characteristics. The area test first set any pixel groupings in the mask 

containing <1000 pixels to zero, and it then rejected any masks that contained <1000 

pixels. Since the mask started with 3000 pixels, and perfectly circular 5mm to 10mm 

masses should ideally contain 2000 to 8000 pixels, this was a very conservative bound. 

Next, the contrast test assumed that the masses are of a higher mean grayscale value 

than the surrounding tissue, or they would not be discernible. Thus, it divided the mean 

grayscale value of the original image within the mask by the mean of the original image 

within the entire ROI. Only ROIs with contrast values from 1.05 to 1.13 were retained. 

Since masses tended to be more circular than other structures in the breast, the final 

test was the circularity test. A circle of area equal to the area of the mask was created 

and positioned at the center of the 'on' pixels in the mask (Figure 19). 

The area of overlap of the circle and the mask was divided by the area of the circle 

to produce a number ranging from zero to one. ROIs with two surviving regions in them 

or long narrow regions failed this test. The threshold for circularity was set at 0.58. One 

final aspect of circularity was used for the last false alarm reduction step. The remaining 

ROIs (up to seven) were ranked in descending order once again, and only the top four were 

retained. For those images that still contained seven mass-like ROIs, it was found that 

the malignant ROI was usually the first or second ranking ROI, and it was never past the 

fourth in line in the training or test sets. Although this technique (picking the top four 

ROIs) was not influenced by Wei's hand segmentation of four ROIs per image, it makes 

for a good comparison of the results. 

Initially, each test was conducted on all ROIs, but the tests were much more effective 

when they were done in succession on only the ROIs that survived the previous tests. 

Thus the final binary mask for the example is shown in Figure 20. The best four ROIs 

were retained and sent on to the Matching Module. In almost all of the mammograms, 

the best four ROIs corresponded to regions that a radiologist should and most likely does 
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Figure 18.    The ROI from Figure lb and it's Morphological Masks 
(a) Malignant Mass ROI (b) Top 15 Percent of the Histogram 
(c) Erosion (d) Final Mask 
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Figure 19. (a) Circular Mask for the ROI Mask Shown in Figure 18d. 

scrutinize during their diagnosis. Thus, selecting up to four of the most mass-like regions 

in a mammogram, without even the Matching Module's computer diagnosis is a very useful 

tool for the radiologist. 

Once the ROIs, if any, successfully passed through the Index Module's procedure, 

they were sent on to the Prediction/Feature Selection Module. 

4-3    Prediction / Feature Selection 

In the literature, the features that seemed most likely to be separable to the radi- 

ologist, and thus, to the CADx system, were texture, shape, and mass border transition 

features (20). Kegelmeyer (37) seemed to have the best results using the Laws texture fea- 

tures; so those were the first set of features chosen in the Prediction Module. In addition, 

the four shape and border features that were already calculated in the indexing step were 

used. 

The Laws features are, in general, used for image segmentation, but Kegelmeyer (35, 

36, 37) and Wei (38) have both applied them to classification of masses. Miller and Astley 

also used the Laws features to classify other types of breast tissue, such as, fatty and 

glandular tissue (56). The Laws features are derived from a set of five convolution kernels 
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Figure 20. The final output of the Index Module. It shows the original example image 
with the suspicious regions outlined. The true malignant mass is identified by 
the arrow. 
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Kernel 
Name 

Kernel 
Label Kernel Values 

Average 1 (14    6     4     1) 
Spot s (    -1     0    2     0    -1    ) 
Edge e (     1-4    6-4     1    ) 
Ripple r (-1-2    0     2     1    ) 
Wave w (    -1     2    0-2     1    ) 

Figure 21. Laws one-dimensional kernels 

1 4 6 4 1 
4 16 24 16 4 
6 24 36 24 6 
4 16 24 16 4 
1 4 6 4 1 

Figure 22. The Laws L5L5 two-dimensional kernel 

that are applied to an image. Each of the kernels shown below responds to different local 

texture behavior. 

For image texture analysis, these five kernels are convolved together to form twenty- 

five 5x5 kernels. These kernels are designated by 1515, 15s5, ..., s5l5, s5s5, ..., and w5w5. 

Notice that the switched position of the labels corresponds to the transpose of the original 

kernel (Z5s5 = s5l5T). All twenty-five kernels were convolved with the ROIs. A number 

of techniques were used to determine how to select one number to represent the resultant 

energy in the convolved images. Kegelmeyer (35, 36, 37) used a 15x15 averaging filter to 

force a consensus between neighboring pixels, but he was classifying individual pixels in 

the raw image, not ROIs. The best feature set for classifying an entire ROI would rather 

be a number that contains the correlation of the ROI with the particular Laws kernel. 

An average pixel value in the convolved image should capture the desired correlation. 

However, since in most cases the true masses encompassed only a subset of the ROI, only 

the resultant pixel values within the Index Module's final mask were used. (The mask was 

dilated twice more to ensure most of the mass and the transition region was included.) 

This was done to keep the 'normal' tissue from diluting the mass texture results. Of these 

twenty-five Laws features and the ratio, mass area, contrast, and circularity Index Module 

features the best features needed to be found. 
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Since up to four regions could be retained per image, there were a possible thirty- 

six malignant ROIs and possibly three to four times that number of benign ROIs in the 

Malignant Mass Training and Test Sets. So, recalling Foley's Rule (number of class samples 

> 3 times number of features) up to a maximum of about ten features could be used to 

develop the model. As discussed in Chapter II, there are many ways to select the 'best' 

features. Although each method may yield different 'best' features, they should be in some 

agreement. Since the Matching Module uses a neural network, the best method for feature 

selection would be a neural network technique. 

The feature saliency technique chosen was the derivative-based technique using the 

imbalanced training set neural network architecture with sigmoidal activations. However, 

recalling the maximum number of features rule discussed in Section 2.7, even for feature 

saliency tests, there is a risk in using too many features. The results may not be useful. 

Recall also that the goal was to obtain about ten features, so more than ten features 

were needed so a selection could be made. The number chosen from which to make this 

down selection was twenty features. Since the f-ratio rule is the simplest of the rules, 

it was used to eliminate the nine least relevant features. Then the more sophisticated 

derivative-based method could be used on the remaining twenty features. Although, using 

twenty features for thirty-six malignant training samples still violates Foley's rule, the 

saliency results should retain most of their validity. To maintain a reasonable balance 

between Uncle Bernie's rule and a valid network architecture, no hidden nodes were used 

with one output node per Anand's specifications. Although this corresponded to a linear 

discriminant architecture, adding additional nodes could cause the data to be memorized, 

and thus invalidate the saliency results. This resulted in twenty-one network connections 

for a ratio of about five samples per connection. Thus, there is the risk that the network 

will memorize the data in the 10,000 epoch training run, but the features should still retain 

their ranking. 

The final ten features then define the differences between the malignant masses and 

all other benign tissue. In essence these feature parameters form the model which is used 

for the Matching Module. 
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4-4    Matching / Classification 

The Matching Module used the features selected from the Prediction Module and 

determined the best neural network architecture and coefficients for classification of all of 

the evaluation data. This evaluation data included all the ROIs from the 251 images not 

in the Malignant Mass Train or Test sets. The only malignant masses it contained were 

from the Malignant Mass Eval set. Thus, it accurately represents the true classification 

rate for the benign ROIs, but only had at best twelve malignant ROIs to determine the 

classification rate for the Malignant ROIs. 

4-5   Summary of Methodology 

This chapter has described the Model-Based Vision (MBV) process for detecting 

and classifying suspicious regions in digitized mammograms. The MBV Modules identified 

the key tasks to perform and the requirements for interfacing each of the pattern recog- 

nition concepts into one complex algorithm. The FOA Module identified the suspicious 

regions. The Index Module separated the regions into two labeled categories and reduced 

the number of false ROIs for the Medium Mass Category. The Prediction Module defined a 

number of features and then selected the best features from which it developed it's models 

for malignant and non-malignant tissue. The Matching Module used the best features and 

designed the best neural network architecture and parameters to correctly classify the ma- 

lignant and benign regions. Each of these Modules involved a complex series of tasks and 

tests which the MBV process neatly structured into the appropriately grouped processes 

for a highly functional pattern recognition architecture. 
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V.   Analysis 

Receiver Operating Characteristic (ROC) Curves are used to report the results. 

These plots give a better picture of the performance of the algorithm because they in- 

clude true-malignant, false-malignant, true-benign, and false-benign information. Their 

development, meaning, and use are described in more detail in Giger's article (6) and 

Metz's article (57). 

The biopsied benign cases are included in this analysis separately to determine at 

what point in the process they are either ignored, or they are classified and presented to 

the radiologist as benign ROIs. 

5.1    Focus of Attention 

Recall, the Focus of Attention (FOA) module consisted of the steps shown in Fig- 

ure 23. 

The results for the FOA module are listed below, but the overall performance was 85 

percent correct segmentation of malignant regions with 67 percent of the benign biopsied 

regions being retained and an average of 8.3 false ROIs per image being passed on to the 

next Module. 

For analysis, the Malignant Mass Train and Test Set results are combined into the 

indexed classes. Figure 24a lists the results for the Medium ROIs and Figure 24b lists the 

results for the Large ROIs. Of the 36 malignant masses present, 31 of them were indexed 

as Medium ROIs with 241 Medium false ROIs. In addition, 2 of the medium malignant 

regions had two Medium ROIs associated with them. Two of the malignant masses were 

indexed as Large ROIs with a corresponding 14 Large false ROIs. Of the three ROIs that 

1. Create a threshold mask for pixel values < 1500. 
2. Gradient fill the background pixels. 
3. Apply the DoG Filter. 
4. Mask out the top, bottom, and fill regions. 
5. Dynamically threshold at 0.5 times the maximum gray level. 
6. Group the binary mask regions.  

Figure 23. FOA Process 
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Data Set 

Malignant Mass 
Train and Test Set 
Malignant Mass 
Eval Set 
Benign Mass 
Set 
Non-Mass 
Set 
Medium ROI 
Results 

Number 
of Images 

36 

12 

53 

183 

284 

Correct 
Regions Found 

31/34 

7/11 

36/54 

na 

39/46 

True Positive 
Fraction 

0.91 

0.64 

0.67 

na 

0.85 

Total False 
ROIs 

241 

86 

414 

1517 

2258 

False ROIs 
per Image 

6.7 

7.2 

7.8 

8.3 

8.0 

(a) 

Data Set Number 
of Images 

Correct 
Regions Found 

True Positive 
Fraction 

Total False 
ROIs 

False ROIs 
per Image 

Malignant Mass 
Train and Test Set 36 2/2 1.00 14 0.39 

Malignant Mass 
Eval Set 12 1/1 1.00 1 0.08 

Benign Mass 
Set 53 1/1 1.00 16 0.30 

Non-Mass 
Set 183 na na 78 0.43 

Large ROI 
Results 284 3/3 1.00 109 0.38 

(b) 

Data Set Number 
of Images 

Malignant 
Regions Found 

True Positive 
Fraction 

Total False 
ROIs 

False ROIs 
per Image 

Combined 
Results 284 41/48 0.85 2367 8.3 

(c) 

Figure 24.    Focus of Attention Module's Performance: 
(a) Medium ROI Index Results (b) Large ROI Index Results 
(c) Combined Results 
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were missed, two images (one case) contained a 4mm mass, and the other one was buried 

too deeply into a large dense region of the mammogram to be separated out in the CC 

view. However, it was detected in the MLO view. An image from each missed case is 

shown in Figure 26. Note that the algorithm was never designed to detect masses less than 

7mm in diameter. 

The two ROC curves in Figure 25a show the tradeoff for adjusting the ratios that 

defined what regions were sent to the Indexing Module or the tradeoff for the number of 

regions sent to the Indexing Module. For the ratio ROC curve, the lower threshold for the 

ratio was varied from zero to fifty. Only regions with ratios higher than the threshold were 

retained. The number of correct malignant ROIs retained vs the number of false ROIs 

retained were plotted for the ratio thresholds. The second ROC curve was done with the 

ratio thresholds set to retain all regions with ratios between three and fifty. Then with 

the regions ranked by ratio, successively fewer ROIs were retained. The number of correct 

ROIs retained within the top 'X' regions vs the number of false ROIs in the top 'X' regions 

define the second ROC curve. Although this test was done in the Indexing Module, the 

ratio was calculated in the FOA Module, and the ranked ratio test is really a loop back into 

the FOA Module. These curves apply to all thirty-six malignant images and both indexed 

classes. Recall, since the large masses are usually palpable and therefore easily diagnosed, 

no attempt was made to reduce the number of Large false ROIs. The final algorithm's 

parameters were set to retain the top seven ROIs with ratios between three and thirty-six 

plus all of the Large ROIs with ratios between thirty-six and fifty. These settings were 

used for the Malignant Eval Set, the Benign Mass Set, and all other images. 

For the Malignant Mass Eval Test Set, the results are listed in Figure 24a for the 

Medium ROIs and Figure 24b for the Large ROIs. Of the 12 malignant masses present, 7 

of them were indexed as Medium ROIs with 86 Medium false ROIs. One malignant mass 

was indexed as a Large ROI with a corresponding single Large ROI false alarm. Of the 

four masses that were missed, one image was very dark, one mass was ranked eighth, one 

was too close to the film edge, and one was really only discernible in the opposing view (the 

8th ranked ROI image). The dark image mass could fairly easily be detected by lowering 

the mask threshold from 1500 to 1480 and the eighth-ranked mass could be detected by 
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Operating Point 

+ = Top 9,8,7,... Largest Regions 
o = Ratio Test 
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2       3       4       5 
False ROIs Per Image 
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+ = Top 8,7,6A- Largest Regions 
0 = Ratio Test 

2       3       4       5       6 
False ROIs Per Image 

(b) 

Figure 25.    ROC Curves for the Focus of Attention Module 
(a) Combined Train and Test Malignant Sets (b) Benign Set 

passing one more ROI per image to the Indexing Module's morphological tests. Neither 

of these changes would increase the false alarm count much since the Index Module only 

passes the top four regions anyway. 

For the Benign Mass Set, recall that images in this set contained a radiologist identi- 

fied mass that was biopsied and proven to be benign. The intent of the FOA module is to 

either reject these masses outright, or pass them along to the rest of the MBV Modules to 

identify these ROIs as non-cancerous regions. Of the 53 biopsied benign masses present, 

36 of them were indexed as Medium ROIs with 414 Medium false ROIs. One of the benign 

masses was indexed as a Large ROI with a corresponding 16 Large false ROIs. The ROC 

curve in Figure 25b shows the tradeoff for adjusting the ratios and the top rank ratio ROIs 

retained that defined what regions were sent to the Indexing Module. The same criterion 

used to make the malignant ROC curves were used to make the benign ROC curves. 

Figure 24c contains the overall results for the Focus of Attention Module. It treats 

all non-malignant ROIs as false ROIs and includes both Indexed classes. Including the two 

missed Eval Set masses as detections, brings the true-positive fraction to 0.90. 
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Figure 26.    Two Example Malignant Images that Failed to Pass the FOA Module Process: 
(a) The Box Shows the Missed Malignant Mass Within Dense Tissue. 
(b) The Box Shows the Missed 4 mm Malignant Mass. 
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5.2   Indexing 

Recall, the Indexing module consisted of the steps shown in Figure 27. 

1. Ratio test the ROIs (3 < ratio < 50). 
2. Index the ROIs, and only continue with the Medium Mass ROIs. 
3. Rank the ROIs in descending order and keep < 7 ROIs. 
4. Threshold select the top 15 percent of the ROI's histogram. 
5. Erode the binary mask histogram image. 
6. Eliminate any edge pixel groupings. 
7. Dilate twice. 
8. Eliminate pixel groupings with < 1000 pixels. 
9. Morphologically close twice. 
10. Select ROIs with > 1000 pixels. 
11. Select ROIs with contrasts between 1.05 and 1.13. 
12. Select ROIs with a circularity coefficient > 0.58. 
13. Select < 4 ROIs per image based on the circularity test.  

Figure 27. Index Module process 

The purpose of the thirteen steps was to separate the ROIs into Large and Medium 

Indexes, and then reduce the number of false ROIs. Since, the large masses are easily 

diagnosed and since there were only two Large Malignant ROIs, the Large ROIs were not 

processed by the Index Module. So, steps 3 through 13 apply only to Medium ROIs. 

Based on the results of the morphological operations and tests (steps 3-9), many 

of the masks contained few or no 'on' pixels in them. Many false ROIs occurring near the 

breast-background transition had the brightest pixels near the edge of the ROI, and were 

eliminated by these steps. Then, the area, contrast, and circularity tests each reduced the 

false ROI rate further. Figure 28 lists the final results for the different datasets. All 284 

images were used and the results recorded, but only Medium ROIs were used in these tests. 

The overall results were 80 correct classification of malignant masses with 43 percent of 

the benign masses retained and 2.36 false ROIs per image. 

For the Malignant Mass Train and Test Set results, of the 36 malignant masses 

present, once again 31 of them were indexed as Medium ROIs with 67 Medium false ROIs, 

and the two medium malignant regions still had the two Medium ROIs associated with 

them. Thus there were a total of 33 ROIs. The ROC curve in Figure 29a shows the tradeoff 

for adjusting the parameters for each of the tests. The area parameters were varied from 
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Data Set Number 
of Images 

Correct 
Regions Found 

True Positive 
Fraction 

Total False 
Alarms 

False Alarms 
per Image 

Malignant Mass 
Train and Test Set 36 31/33 0.94 67 1.9 

Malignant Mass 
Eval Set 12 4/11 0.36 27 2.3 

Benign Mass 
Set 53 23/54 0.43 111 2.1 

Non-Mass 
Set 183 na na 465 2.5 

Combined 
Results 284 35/44 0.80 670 2.36 

Figure 28. Indexing Module's Performance for Medium ROIs. 

>1000 pixels to >3500 pixels, the contrast parameters were varied from >1.05 to >1.13, 

the circularity parameters were varied from >0.58 to >0.88, and the top seven through the 

top one circular ROIs were retained for the final ROC curve. The final parameters were 

shown in Figure 27 above. 

For the Malignant Mass Eval Test set results, of the 11 Medium ROI malignant 

masses present, 5 were indexed as Medium ROIs with 27 Medium false ROIs. Only 7 

Medium ROIs were actually passed to the Index Module, so 2 of the 7 were rejected by 

the morphological tests. One was touching the edge of the film and was thus eliminated 

by the morphological test, and the other had a contrast of 1.16. The edge ROI could be 

detected by changing the process to allow masses touching the left edge of the ROI to pass 

the first morphological step. The additional false ROIs passed would probably be rejected 

using the other tests. The other ROI could easily be included by eliminating the upper 

limit on the contrast test. There is really no reason for the upper limit, since only true 

masses should have that high of a contrast. Thus, the algorithm should be able to pick up 

two more malignant masses with a small increase in false ROIs. 

For the Benign Mass Set results, of the 54 benign biopsied masses present in the 53 

images, 23 of them were indexed as Medium ROIs with 111 Medium false ROIs. The ROC 

curve in Figure 29b shows the results for this data set. The parameters were adjusted in 

the same way as they were for the malignant ROC curve. 
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Figure 29. 
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(b) 

ROC Curves for the Indexing Module (Medium ROIs only) 
(a) Combined Train and Test Malignant Sets (b) Benign Set 

2.5 

The bottom row of Figure 28 contains the overall results for the Indexing Module. 

It treats all non-malignant ROIs as false ROIs. With the changes proposed to pass the 

two Medium malignant masses in the Eval set, the true positive fraction would increase to 

0.84. If the two additional images rejected by the FOA Module were successfully passed by 

the Index Module, the true positive fraction could reach 0.89. Passing these four Medium 

ROIs through the Index Module increases the Eval Set true positive rate to 0.72 which is 

much closer to the 0.94 rate achieved with the Train and Test sets. 

5.3   Prediction / Feature Selection 

The Prediction Module extracted the Laws features and the Index Module's four 

features to determine the best ones to use to develop the malignant mass and non-malignant 

tissue models. It used all of the ROIs from the Malignant Mass Train and Test sets and 

only the correctly segmented biopsied regions from the Benign Mass Set. The benign 

biopsied regions were included to ensure the model would be denned using regions that 

radiologists had identified as very close to being malignant.  The other false ROIs from 
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Rank f-ratio Feature Rank f-ratio Feature Rank f-ratio Feature 

1 0.1774 26-area 11 0.0591 7-s5s5 21 0.0476 22-w5s5 

2 0.0855 4-15e5 12 0.0574 21-w515 22 0.0474 5-15w5 

3 0.0850 19-e5e5 13 0.0574 20-e5w5 23 0.0472 24-w5e5 

4 0.0825 27-circle 14 0.0558 17-e5s5 24 0.0436 15-r5w5 

5 0.0688 23-w5r5 15 0.0539 9-s5e5 25 0.0414 12-r5s5 

6 0.0627 10-s5w5 16 0.0527 29-ratio 26 0.0391 14-r5e5 

7 0.0622 16-e515 17 0.0517 25-w5w5 27 0.0384 ll-r515 

8 0.0615 8-s5r5 18 0.0514 18-e5r5 28 0.0301 3-15r5 

9 0.0596 13-r5r5 19 0.0513 2-15s5 29 0.0034 28-contrast 

10 0.0592 6-s5l5 20 0.0502 1-1515 

Figure 30. F-ratio ranking for the 29 features. 

the Benign Mass set were not included to keep the imbalanced training set problem to a 

minimum. As it was, there were 117 samples: 33 malignant and 84 benign. 

The twenty-five Laws features described in Section 4.3 and the ratio, area, contrast, 

and circularity features from the 117 ROIs were ranked according to their f-ratio. The 

ranking is shown in Figure 30. 

Although the actual f-ratio values did not show a dramatic break point for good 

versus bad features, the area feature was much better than any of the other features. As 

for the Laws features, the spot (s) and edge (e) filters performed better than the others, 

and the ripple filters were the worst overall. The first two columns of features (20 in all) 

in Figure 30 were retained and used for the derivative-based feature saliency test. 

The derivative-based feature saliency test was done using the top twenty f-ratio 

features using the imbalanced neural network algorithm with sigmoidal activations and 

one clamped output node. The clamp was set to 0.1. Since batch algorithms tend to get 

stuck in local minima of the error surface, tracking of the initial starting point on the 

error surface was monitored. This was done by evaluating the mean square error (mse) 

for both classes for the first epoch. These mse's ranged from 0.08 to 0.45 for either class. 

Since the desired outcome was to correctly classify malignants at the expense of incorrect 

benign classifications, the algorithm was restarted if the initial mse for the malignant class 

for epoch one was >0.20. Then to obtain reasonable statistics, ten networks with random 

initial weights were run and the results compared. 
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15 
Feature 

(a) 

Derivative Feature Kernel F-ratio 
Rank Number Rank 

1 23 w5r5 5 
2 13 r5r5 9 
3 7 s5s5 11 
4 9 s5e5 15 
5 17 e5s5 14 
6 2 15s5 19 
7 20 e5w5 13 
8 4 I5e5 2 
9 26 area 1 

(b) 

Figure 31. (a) A histogram of the number of times each feature appeared in the top ten 
ranking of features for ten independent neural network feature saliency trials, 
(b) The Feature Ranking 

Figure 31 shows the occurance histogram depicting the number of times each feature 

appeared as one of the top ten features in each of the ten independent feature saliency 

trials. Thus, the best a feature could do was appear ten times in the histogram. Features 

2, 7, 9, 13, 17, 20, and 23 each occurred ten times, with features 4 and 26 appearing six 

times. The top features were also listed by their average ranking for the ten trials. 

The ten networks were designed to start at a position in weight space that kept the 

Mean Square Error (mse) after the first epoch for the malignant class samples < 0.20. 

This ensured the networks favored classifying malignant samples at the expense of benign 

samples.   As shown in Figures 32, there was not much of a problem with the networks 
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Malignant Benign 
mse 
Epoch 1 0.19±0.01 0.32±0.02 
mse 
Epoch 10000 0.1Ü0.01 0.21±0.01 

Actual/Classify malignant benign 
malignant 30±1 3±1 
benign 20±2 64±2 

(a) (b) 

Figure 32.    (a)Mean square error results per class for feature saliency trials, 
(b) Feature saliency trial confusion matrix. 

Malignant Benign 
mse 
Epoch 1 0.15±0.04 0.39±0.07 
mse 
Epoch 10000 0.09±0.04 0.23±0.06 

Actual/Classify malignant benign 
malignant 30±3 3±3 
benign 30±11 54±11 

(a) (b) 

Figure 33.     (a) Mean square error results per class for network architecture trials, 
(b) Network architecture trial confusion matrix. 

getting stuck in local minimums for this architecture and feature set. The networks' 

average mse per class for the first and the ten thousandth epoch are shown as is the 

confusion matrix. The standard deviations are shown too. 

It is interesting to note, that the four kernels Kegelmeyer picked from the literature 

as being the best ones (15s5, 15e5, r5r5, and e5s5), also appeared in the top nine derivative- 

based saliency features. With the nine best features in hand, the model was ready to be 

used to classify all Medium ROIs. 

5.4    Matching / Classification 

The Classification module used the nine features found from the Prediction Module 

and determined the best neural network architecture and weights to use for the classifica- 

tion of all the Medium ROI samples. Two hidden nodes were chosen for the architecture. 

This yielded 23 connections for 117 training samples for an Uncle Bernie ratio of five. Of 

course, Foley's rule was satisfied since there were only 9 features and 33 malignant samples. 

Ten trials were run, but this time there was much greater variability in the results. Notice 

the standard deviations in Figure 33. 
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Of the ten trials, the weights for the best trial were chosen as the best model/classification 

architecture combination. These weights correctly classified all 37 malignant samples and 

284 of the 670 benign samples. (Recall that two masses had two ROIs associated with 

them.) The classifier achieved a true positive rate of 1.0 and a false positive rate of 0.58 

for all Medium ROIs from the 284 images. Of the 23 remaining benign biopsied ROIs, 8 

of them were classified correctly as benign. Figure 34 shows an example final output to 

the radiologist with the computer's diagnosis. The computer diagnosis correctly identified 

the malignant mass and two of the three benign regions. Thus, there was one false alarm, 

and three correct diagnoses for this image. 

5.5   Analysis Summary 

Recalling all of the steps in the process: First the algorithms were developed and 

tested on the 36 images of the Train and Test sets. Then the algorithms were evaluated 

on all the other 248 images including 12 malignant mass images and 53 benign biopsied 

images. The final results for detecting and classifying both Large and Medium ROIs for 

all 284 images are shown in Figure 35. The results for all of the data, excluding the 12 

Malignant Mass Eval set images, are shown in Figure 36. As discussed above, options are 

available to lift the Eval set performance up to the level of the Train and Test set values. 
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Figure 34. The final output to the radiologist. It shows the original example image with 
the suspicious regions and the computer's classification identified. The true 
malignant mass is identified by the double arrow. The other three regions are 
truly benign regions. 
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Data Set Number 
of Images 

Malignant 
Regions Found 

True Positive 
Fraction 

Total False 
Alarms 

False Alarms 
per Image 

FOA Module 
All Indexes 284 41/48 0.85 2367 8.3 

Index Module 
Medium ROIs 284 35/44 0.80 670 2.36 

Matching Module 
Medium ROIs 284 37/37 1.0 403 1.4 

Final Results 
All ROIs 284 37/48 0.77 512 1.8 

Figure 35.    Final Results for the FOA Module, Index Module, and Matching Module using 
all data. 

Data Set Number 
of Images 

Malignant 
Regions Found 

True Positive 
Fraction 

Total False 
Alarms 

False Alarms 
per Image 

FOA Module 
All Indexes 272 33/36 0.92 2280 8.4 

Index Module 
Medium ROIs 272 31/33 0.94 643 2.36 

Matching Module 
Medium ROIs 272 33/33 1.0 376 1.4 

Final Results 
All ROIs 272 33/36 0.92 484 1.8 

Figure 36.    Final Results for the FOA Module, Index Module, and Matching Module using 
all but the 12 malignant Eval Set images. 
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VI.   Conclusion 

6.1    Summary 

The Focus of Attention Module's DoG filter in conjunction with the Indexing Mod- 

ule's morphological operations and tests proved to be an effective tool for locating malig- 

nant ROI's in mammograms. Considering the 272 image database, the MBV algorithm 

detected 92 percent of the malignant ROIs with less than two false malignant ROIs per 

image. The Prediction/Feature Selection Module tested the Laws features that were most 

applicable for classification, and through derivative-based feature saliency testing, it found 

the best nine features. The classification results using these nine features were a true- 

positive rate of 1.0 and a false-positive rate of 0.58 for the Medium ROIs. The false-positive 

rate corresponded to an average of 1.8 false malignant ROIs per image for both Medium 

and Large ROIs combined. 

These results compare very well to the most current and relevant results in the 

literature shown in Figure 37. Of the large database researchers, only Kegelmeyer has 

done both segmentation and classification in one system, but he restricted his database 

to spiculated masses only. This work's results are much better than Yin's in terms of 

false alarms, and are comparable to both Yin's and Kegelmeyer's true-positive fractions 

for the segmentation process. The classification results are better than Giger's in terms 

of the false-negative fraction, and are comparable to both Giger's and Wei's true-positive 

fractions. Thus, the MBV system, with it's ability to Focus, Index, Model, and Match, 

has good possibilities for implementation in a breast cancer diagnosis system. 

The new contributions this thesis made were: 

The first approved medical protocol with the Wright Patterson Air Force Base hos- 

pital was accomplished as a part of this thesis. The protocol was initiated to acquire the 

database necessary for this work. 

The database generated as a part of this thesis is the largest, high resolution database 

of any of the current researchers' databases. It has a higher resolution than Kegelmeyer's 

database (2.4 times) and Giger's and Yin's database (4 times).   This provides more in- 
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Researcher Database False Alarms 
per Image 

True Positive 
Fraction 

False Positive 
Fraction 

Citation 

Brzakovic 25 0.8 0.8 na (34) 

Lai 17 1.7 1.0 na (1) 
Kegelmeyer 1 62 0.27 1.0 na (36) 

Kegelmeyer 2 340 0.28 0.97 na (37) 

Wei 168 ROIs >2 0.95 0.55 (38) 

Yinl 92 3 0.95 na (40) 

Yin 2 308 6.5 0.91 na (38) 

Giger 50 ROIs na 0.95 0.79 (38) 

Polakowski 272 1.8 0.92 0.58 

Figure 37.    Comparison of DoG Results to Alternate Techniques for Detection of Masses 
in Mammograms. 

formation for detection and diagnosis, and the detailed description of each biopsied case 

allows more insight into malignant vs benign tissue's characteristics. 

This is the first application of the Model Based Vision (MBV) process to the detec- 

tion and diagnosis of breast cancer masses. New ratio, area, and contrast features were 

developed for this thesis, and the MBV process is in place and operational. 

This is the first application of a physiologically motivated Difference of Gaussians 

(Dog) filter to breast cancer detection. It models the best breast cancer detection system 

in use, the radiologist and their optical detector, the eye. 

This is the first application of any feature saliency algorithm to the selection of 

mass-specific features. In most cases, researcher's used trial and error to determine the 

best features. 

This is the first use of data partitioning to determine the extensibility of the algorithm 

to the clinical environment. 

6.2    Conclusions 

This work has shown that the Model Based Vision approach is well-matched to a 

CADx system for breast cancer diagnosis. Using the human-based perception Difference 

of Gaussian technique for focusing the radiologist's attention on a small number of regions 

of interest in a mammogram could greatly improve their diagnosis capability. But, by also 
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indexing and classifying those regions as malignant regions or benign regions, the CADx 

system can be an instrumental breast cancer diagnosis tool as a fail-safe or second reader for 

the radiologist. At 92 percent correct segmentation with less than 2 false malignant ROIs 

per image, this CADx system is ready to be tested in a clinical setting as a radiologist's 

aide. 
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Appendix A.   Database 

Matlab 
Filename 

AFIT 
Filename 

WPAFBH 
Filename 

Mass 
Diameter 

Row 
Coord 

Column 
Coord 

mall af004 AFIT001 8mm 370 230 

mal2 af006 AFIT004 20mm 1210 370 
mal3 af009 AFIT006 14mm 1430 570 
mal4 afOll AFIT006 14mm 1755 360 
mal5 af014 AFIT009 8mm 1605 240 
mal6 af016 AFIT009 8mm 1475 300 
mal7 af033 AFIT014 9mm 464 310 
mal8 af035 AFIT014 9mm 1040 420 
mal9 af042 AFIT016 10mm 1128 129 
mallO af044 AFIT016 10mm 1540 100 
malll af055 AFIT021 15mm 1320 220 
mall2 af057 AFIT021 15mm 770 370 
mall3 af067 AFIT028 11mm 1030 890 
mall4 af069 AFIT028 11mm 914 140 
mall 5 af079 AFIT035 10mm 1564 704 
mall6 af081 AFIT035 10mm 1114 400 
mall 7 af083 AFIT036 6mm 490 110 
mall8 af085 AFIT036 6mm 1180 300 

Table 1. Malignant Mass Training Set 

Note:  The mass center coordinates are referenced from the top left of each image 
after the image has been oriented with the chest wall on the left of the image. 
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Matlab 
Filename 

AFIT 
Filename 

WPAFBH 
Filename 

Mass 
Diameter 

Row 
Coord 

Column 
Coord 

mall9 afllO AFIT050 10mm 750 340 

mal20 afl23 AFIT056 10mm 540 230 

mal21 afl25 AFIT056 10mm 870 250 

mal22 afl04 AFIT049 10mm 530 120 

mal23 afl49 AFIT062 11mm 1100 80 

mal24 afl51 AFIT064 15mm 750 270 

mal25 afl53 AFIT064 15mm 1450 330 

mal26 afl72 AFIT073 4mm 1420 75 

mal27 afl74 AFIT073 4mm 820 100 

mal28 afl75 AFIT074 14mm 750 110 

mal29 afl77 AFIT074 14mm 1090 140 

mal30 afl89 AFIT083 15mm 490 100 

mal31 afl90 AFIT083 30mm 775 460 

mal32 afl91 AFIT083 15mm 550 360 

mal33 afl92 AFIT083 30mm 870 770 

mal34 afl93 AFIT090 9mm 1210 80 

mal35 afl95 AFIT090 9mm 690 210 
mal36 afl06 AFIT049 10mm 880 170 

Table 2. Malignant Mass Test Set 
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Matlab 
Filename 

AFIT 
Filename 

WPAFBH 
Filename 

Mass 
Diameter 

Row 
Coord 

Column 
Coord 

evall af206 AFIT094 20mm 620 250 

eval2 af208 AFIT094 20mm 850 540 

eval3 af210 AFIT098 20mm 1010 280 

eval4 af212 AFIT098 20mm 1570 130 

eval5 af243 AFIT115 9mm 500 150 

eval6 af245 AFIT115 9mm 930 420 

eval7 af248 AFIT117 8mm 310 250 

eval8 af250 AFIT117 8mm 770 500 

eval9 af278 AFIT134 12mm 880 50 

evallO af280 AFIT134 12mm 760 440 

evall 1 af285 AFIT138 15mm 1540 110 

evall2 af287 AFIT138 15mm 1470 100 

Table 3. Malignant Mass Eval Set 

68 



Matlab 
Filename 

AFIT 
Filename 

WPAFBH 
Filename 

Mass 
Diameter 

Row 
Coord 

Column 
Coord 

benl af025 AFIT012 14mm 550 470 

ben2 af027 AFIT012 14mm 1080 500 

ben3 af030 AFIT013 16mm 580 580 

ben4 afD32 AFIT013 16mm 1030 730 

ben5 af046 AFIT017 7mm 1300 730 

ben6 af048 AFIT017 7mm 1400 580 

ben7 af050 AFIT018 7mm 1480 130 

ben8 af064 AFIT024 17mm 580 130 

ben9 af066 AFIT024 17mm 800 300 

benlO af071 AFIT032 14mm 1180 350 

benll af073 AFIT032 14mm 1430 300 

benl 2 af076 AFIT034 14mm 1280 730 

benl3 af078 AFIT034 14mm 1730 680 

benl4 af087 AFIT037 11mm 1230 760 

benlö af089 AFIT037 11mm 1680 640 

benl6 afD93 AFIT039 10mm 630 75 

benl7 af095 AFIT042 8mm 410 10 

benl7 af095 AFIT042 8mm 1180 440 

benl8 af097 AFIT042 8mm 680 400 
benl8 af097 AFIT042 8mm 1220 520 
benl9 afll6 AFIT054 20mm 1500 220 
ben20 afll8 AFIT054 20mm 1050 320 
ben21 afl32 AFIT058 22mm 1080 120 
ben22 afl34 AFIT058 22mm 860 460 
ben23 afl35 AFIT059 10mm 880 360 
ben24 afl37 AFIT059 10mm 900 680 
ben25 afl51 AFIT064 15mm 825 340 
ben26 af!53 AFIT064 15mm 1510 264 
ben27 afl55 AFIT065 15mm 740 124 

ben28 afl56 AFIT065 20mm 910 210 

ben29 afl57 AFIT065 15mm 870 480 
ben30 afl58 AFIT065 20mm 1050 550 
ben31 afl63 AFIT068 12mm 900 220 

ben32 afl65 AFIT068 12mm 1350 760 
ben33 afl67 AFIT071 10mm 1635 460 

ben34 afl69 AFIT071 10mm 1760 280 
ben35 afl80 AFIT075 16mm 1350 280 
ben36 afl82 AFIT075 16mm 1240 230 
ben37 afl83 AFIT078 12mm 525 920 
ben38 afl97 AFIT091 8mm 1230 170 
ben39 afl99 AFIT091 8mm 650 410 

Table 4. Benign Mass Set Images 1-39 
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Matlab 
Filename 

AFIT 
Filename 

WPAFBH 
Filename 

Mass 
Diameter 

Row 
Coord 

Column 
Coord 

ben40 af213 AFIT099 11mm 1120 520 

ben41 af215 AFIT099 11mm 1650 590 

ben42 af217 AFIT101 10mm 1780 120 

ben43 af228 AFIT110 13mm 1350 710 

ben44 af230 AFIT110 13mm 1650 700 

ben45 af235 AFIT112 12mm 870 650 

ben46 af237 AFIT112 12mm 1630 750 

ben47 af252 AFIT118 11mm 700 620 

ben48 af254 AFIT118 11mm 1430 530 

ben49 af256 AFIT120 17mm 950 620 

ben50 af258 AFIT120 17mm 1250 480 

ben51 af272 AFIT132 9mm 420 510 
ben52 af274 AFIT133 7mm 1280 450 

ben53 af276 AFIT133 7mm 1230 670 

Table 5. Benign Mass Set Images 40 - 53 
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Appendix B.   WPAFB Protocol Letter 

EXEMPT PROTOCOL SUMMARY 

TITLE: Computer-Aided Breast Cancer Diagnosis Using Digitized Film 

Mammograms 

PRINCIPAL INVESTIGATOR: Steven K. Rogers, PhD 
Professor of Electrical and Computer Engineering 

FACILITY:    The Air Force Institute of Technology (AFIT) 

i.  SUMMARY. We request the short term use of selected Wright-Patterson 

Air Force Base Hospital (WPAFB) film mammograms to digitize them for later 
computer analysis. The goal is to develop a Computer-Aided-Diagnosis 

(CADx) system to aid radiologists in accurately diagnosing Mammographic 
films. Privacy act regulations will be followed with patient names being 

covered during the digitization process to ensure privacy. The subject 

population is women who have had Mammographic screening at the WPAFB 

Hospital. Only mammograms from patients medical files will be used so 

there is no patient risk or any other risk involved. 

a. AFIT has a breast cancer diagnosis group, led by Prof. Rogers, 

that is pursuing the use of computers to diagnose masses and 
microcalcifications in digitized mammograms as malignant or benign. 

We have been working in this area for two years, with close cooperation 

from Capt Jeffrey Hoffmeister, M.D. from Armstrong Laboratory's Crew 

Systems Directorate at WPAFB. The groups' objective is to transfer 

its thirty years worth of military image processing experience to 

medical CADx. We are continuing with last years highly successful 

results of 88% correct classification of difficult-to-diagnose 

microcalcification cases obtained from the University of Cincinnati. 

This year, there are four AFIT Master's Program students working on 

various CADx implementations. To increase the statistical validity of 

the results and robustness of the algorithms, we require a larger and 

higher resolution data base. 

b. By combining the WPAFB Hospital medical files with the high 

resolution digital cameras at the WPAFB graphics shop, we can add to 

our current database and obtain the digital resolution required for our 

classification algorithms. The real benefit will be the increase in 

resolution from 160um currently to 9um for the WPAFB Hospital images. 

The resolution has a dramatic effect on the accuracy and types of 

classification techniques employed. Based on Capt Hoffmeister's 

estimation, we can increase the number of images over last year's 
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database from 95 (38 malignant, 57 benign) by approximately 50 

malignant and greater than 50 benign images and also obtain the other 

contralateral mammograms for further classification accuracy. In 

addition, we hope to get associated data (such as age) to add those 

risk factor analyses to the CADx algorithms. 

2. PROCEDURE. This procedure will be used to digitize five to ten cases 

at a time until all of the cases are exhausted. The procedure for 

digitizing the films follows: 

a. Capt Hoffmeister reviews medical records and pulls cases with 

microcalcifications. 

b. All mammograms are kept in the original folder. A naming system 

is used to track the individual films of interest: target film with 

microcalcification(s) and matching film of opposite breast. 

c. The location of the region of interest is noted with the 

diagnosis. 

d. Personal data is covered with a label, historical risk factor 

data is compiled, and the film is digitized using the Bldg 20 Area B 

camera facility. 

e. Films are returned within two working days. 

f. Digitized versions of the films are transferred to AFIT control 

for CADx testing. 

3. MANHOURS. The bulk of the manhours required for this study derive 

from the six months of fulltime work from the four AFIT students pursuing 

their theses. There is minimal impact on hospital staff. The estimates 

are for digitizing ten cases at a time. 

Med Center Personnel 

Medical record review (records clerks) 0.5 hrs 

AFIT Personnel 

Medical record review (Capt Hoffmeister) 4.0 hrs 

Risk factor annotation 2.0 hrs 

Film annotation for tracking (Students) 2.0 hrs 
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Digitization (Students) 3.0 hrs 

Total/10 cases 11-5 hrs 

Total manhours for 100 cases = 115 hrs 

Analysis (Thesis Work) 

4 students full time for 6 months 

2 faculty half time for 6 months 

4. STATISTICS. The number of samples (malignant and benign) we have in 

our database will determine the number of features we can use to have 

statistically relevant results. Under certain restrictions on the 

training samples, Foley's Rule says that when there are three times as 

many training samples per class as there are features, the error rate on 

the training set is a good predictor of the error rate on an independent 

test set. With our current database limited to 38 malignant samples, 

using Foley's rule, we can have a maximum of about 12 features to use in 

our neural networks or other classification algorithms. By adding the 

WPAFB Hospital data (50 more samples of microcalcifications), we hope to 

increase our feature set to almost 30. Whatever the number of final 

images we obtain, any data will help in our classification success. 

5. For further information and consultation, contact 
Capt Bill Polakowski, 252-4476 or email wpolakow0afit.af.mil. 

Steven K. Rogers, PhD 
Professor of Electrical and 

Computer Engineering 
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Appendix C.   Digitization Procedure 

C.l    Search the Pathology Follow-Up Book Review (PFUBR) : 

NOTE : Jeff Hoffmeister, MD, completes this section. 
a) Search for microcalcification cases, they may not be classified this way. 
b) Fill out the PFUBR, but DO NOT ASSIGN A CASE NUMBER1. 

C.2   Pull Film Jackets for Patients Identified in the PFUBR : 

NOTE : Jeff Hoffmeister, MD, completes this section 
a) Look at the last 2 of the last 4 digits of the patient's SS# : 

i) 00-18 : upstairs 
ii) 19-99 : downstairs 

b) Fill out an OUT form and place it in an OUT folder, then replace the film jacket 
with the OUT folder. The OUT form should contain : 
i) Patient's Name 
ii) Last four numbers of the patient's SS# 
iii) Date 
iv) Room number where the films are being reviewed 

c) Bring PFUBR and the film jackets to a mammogram reviewer 

C.3    Review Mammograms : 

NOTE : Jeff Hoffmeister, MD, completes this section. 
a) Find 4 films from the screening exam for which a lesion was identified for biopsy. 

NOTE: Make sure the most recent mammograms, "for biopsy", are used. 
b) The group of four mammograms should contain one of each of the following : 

i) R-CC - Right Cranial-Caudal 
ii) L-CC - Left Cranial-Caudal 
iii) R-MLO - Right Medial-Lateral Oblique 
iv) L-MLO - Left Medial-Lateral Oblique 

c) Fill out mammogram review and the mammogram diagrams. 
d) The order the mammograms should stay in throughout this process is RCC, LCC, 

RMLO, and LMLO. 

C.Jf.    Digitize Mammograms : 

a) Start up the Big Mac (Mac Ilfx) found in the basement of the X-Ray filing room. 
There is a large folder in the center of the screen with three icons on it. 

b) Select "Film Digitizer". 
c) Login as a Registered User using HOFFMEISTERJ, hit TAB, then type the 
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password obtained from Jeff, and hit return. 
d) Goto "Special" on the button bar on top of the screen, then select "Calibrate" 

from the pull-down menu. 
NOTE : The digitizer only needs to be calibrated once per day. 

e) Put six, 14" x 17" films into the digitizer, which is located to the right of the 
Big Mac. The films are located in the yellow box near the digitizer, 
usually leaning up against the side. 

f) Hit "OK" and the calibration procedure will begin. 
WHILE THE DIGITIZER IS CALIBRATING 
g) Login into Lil Mac (Mac Ilsi) located to the left of Big Mac. There should be a 

large folder in the center of the screen with two icons on it. 
h) Select Paris. 

i) Type in patient's name as AFIT, TEST in the box under where it says 
Patient's Name, then hit return, 

ii) Click on big "Exams for a Patient" icon on the top of the Paris window, 
iii) Under the list of exams for "AFIT, TEST", select an exam. It does not 

matter which exam is selected, 
iv) Goto "Exams" on the button bar on top of the screen, then select 

"Duplicate" from the pull down menu, 
v) Input "Mammography" in Requesting Ward/Clinic Box located in the 

center right portion of the screen (if necessary), 
vi) Click on "New Exam" button at the bottom of the screen and pull the 

bar code slip from the machine on the left. 
NOTES: Lil Mac will not be needed any further. Lil Mac will shut down on 

its own. A bar code slip is good for 16 hours. 
AFTER BAR CODE PROCEDURE IS COMPLETE 
i) Scan the bar code by holding the scanner, located between Big and Lil Mac, at a 

45° angle,approximately 6-8 inches away from the bar code. Pull the trigger 
and listen for the beep from Big Mac. 

h) Place mammography films into the digitizer. Make sure that the films are as clean 
as possible (ie: wipe off any grease pencil or other smudges), 
i) Place in sticker side down. IMPORTANT!! : The LMLO view is on the 

bottom, then RMLO, LCC, and the RCC goes on top. This order is 
critical in the naming of the files, 

ii) Place the long side of the films flush against the right side of the auto-feeder 
on the digitizer 

iii) On Big MAC, click on "Digitize" in the Film Digitizer window, then "OK". 
The digitization process will then start, 

iv) When all the films have been digitized, click "OK". 
iv) Goto "File" on the button bar on top of the screen and select "Quit" 

from the pull down menu, then "Quit" on the Login window. 
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C.5    Getting Image Specs : 

a) Check for filename and image size 
i) Prom the folder in the Main Window, choose the "LiteBox" icon 
ii) Goto the "Patient Name" box and type in AFIT, TEST 
iii) Select exam, it should be the exam with an "I" in the ONLINE column. 

The "I" means that the process is still active 
iv) Click on "Images" on top of the window, then "Display" 
NOTE : The process takes awhile. There is a display in the lower left hand 

corner that updates the number of images loaded 
v) Click on an image to select it 
vi) Goto "Image" on the top button bar and select "Image About" 
vii) Record filenames and image sizes, the size is in the middle of the window 

and the filename is at the bottom 
NOTE :   When copying the filename DO NOT include the WSU prefix 

b) Press the » button in the lower right hand corner to view the next image. 
Repeat the same process for all images 

c) To exit "LiteBox" select "File" from the top button bar and then "Quit" 
NOTE :   Never save changes 

C.6   Naming Images : 

a) Recommended file naming convention : 
NOTE :  The final filenames will be given after the images have been chopped 

AFITxxx.yz 
xxx = case number from the mammogram review 
y = 1: R-CC 
y = 2: L-CC 
y = 3: R-MLO 
y = 4: L-MLO 
z = M: Malignant 
z = B: Benign 

C.I   Finishing Up Digitization : 

a) Fill out the mammogram diagrams. 
b) Place the films back into the Mammogram jacket inside the film jacket. 
c) Return films to the filing room (DO NOT RE-FILE!). 
d) Download data to a portable MAC Hard Drive. NOTE : Curt has fought 

for our privilege to download our files, so follow the directions carefully. 
i) Obtain the adaptor cable for the portable MAC drive from Curt. 
ii) Connect the portable MAC to the big MAC-see Curt if you have questions 

on this step. NOTE :   Make sure the system is shut-down before 
connecting the portable MAC! 
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iii) Start system back up and goto "File" on the button bar, then "Go to 
Finder" NOTE :   The password must be obtained from Curt. 

iv) Place disk in portable MAC, and an icon labeled Polakowski will appear. 
v) Erase disk by clicking on "Special", "Erase Disk", sometimes after erasing, 

the disk must be ejected and re-inserted for the correct directory display. 
vi) Click on the File Copy Icon. NOTE : This procedure only works one time, 

after copying a file quit the window and reopen the File Copy Icon. 
a) First prompt, drive where file is to be copied, type -2 for WSU: 
b) Second prompt, filename, type the entire case-sensitive filename. 
c) Third prompt, drive to be copied to, type -3 for Polakowski drive. 
d) Fourth prompt, filename to be saved as, use the AFITxxx.yz format, 

vii) When the disk is full, goto "Special", "Eject Disk", place another disk 
in the portable drive and repeat the process, 

viii) Return the adaptor cable to Curt, 
e) Return to AFIT and transfer files into our system. 

i) Use Lab MAC II in Rm. 2011 and connect the portable MAC drive. 
NOTE :   Make sure the system is shut down before connecting the 
portable drive, 

ii) If Polakowski icon does not appear. 
a) Click on Romulus icon to open the window. 
b) Select "Utilities", then "Alliance Power Tools". 
c) Look down the "Product" column for Beta 150 and select the 
corresponding ID NOTE :   The icon may appear as soon as you open 
the "Appliance Power Tools" window. 
d) Click "Mount", then "Quit", 

iii) Open the Polakowski drive window. 
iv) Click on the Apple icon in the upper left corner of the screen and 

scroll down to "TPC/Connect II-A", 
v) Select "FTP" on the button bar, then "Connect", 
vi) Change host name to barruc and login, 
vii) Setting selection. 

a) Choose Image data type. 
b) Select the MacBinary box. 
c) Under Options, choose Binary and unselect "Prompt for every file", 

viii) Set the Directory to /home/pinnal/bdata/wpafbh 
ix) Select all of the files and click "Copy". 
NOTE :   The disk sometimes does not eject like it should so you must 

shut-down the system and start all over. 

C.8    Viewing the Images : 

a) Login into any local machine and goto the directory where the image is located, 
i) Goto Command Tool window, type : 

3> cabcd 
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..bdata S> cd wpafbh 
ii) Transfer elements to the ZOO network, type : 

> ftp {ZOO machine} 
NOTE : Make sure you are in the correct directory before this step, 

iii) Send files to the ZOO, type : 
ftp> put {filename} 
NOTE : Make sure you are in the correct directory before this step, 

iv) Modify getmamo*.m file for your ZOO directory 
o) type pwd to identify the directory, should be similar to : 

/tmp_mnt/home/birdsO/dbramlag is current directory 
b) ftp» put getmamo*.m 

v) quit out of the ZOO, then exit out of the directory, 
vi) Rlogin onto Unicorn or Pegasus. 

a) You must type the following : 
>setenvLDJ,IBRARY_PATH/usr/openwin/lib 
>setenv DISPLAY {Machine Name}:0 

vii) Goto the Console Window and type : 
»•xhost +unicorn (or pegasus) 

viii) Return to the Command Tool Window and type, matlab. 
NOTE : Make sure you are in the correct directory before this step, 

ix) wpafbh_files.txt is a listing of the image sizes, 
x) Type, x=getmamo('AFIT.xxx',row size); to view the image. 
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Appendix D.   Matlab Code 

D.l    Difference of Gaussians Code (dog.m) 

*/, Bill Polakowski 
'/, This is a batch file to read in 36 mass malignant mamos 

'/, It does a 20,50 dog with a 55 offset fill to id regions 

*/, It keeps the largest 7 ratio regions and the 4 most 

'/, circular regions 
*/, The outputs are the ratios, centers, contrasts, circularity, 

'/, and areas of the regions, and the regions. 

•///.•/.•/.•/.•/.y.y.7.7.,/.y.y.7.7.y.y.y.y.y////.y.7. initialization ummtmmnmn 

ratio = zeros(43,10); 

roiarea = zeros(43,10); 

roicount = 0; 
con = zeros(43,10); 

circle = zeros(43,10); 
correct = zeros(l,43); 

rbcount = 1; 

rmcount = 1; 

fa.regions = 0; 

fa_ratio = 0; 

fa_7 = 0; 
two = zeros(43,l); 
lab = zeros(43,50); 

nnnmnmnumm* Load DOG Filter mmyx/x/x/x///x/.,/x/. 

p =  '../bdata/'; 
filename=[p  'massfilter']; 
fid=fopen(filename,   'r'); 
[fil,cnt]=fread(fid,[2048,1024],'float'); 

*/, Change from 1024 to 1124 for large images 
fclose(fid); 

m%m%%%n%%%%n%mn    Process 18 Malignant Mammos    7X/X/X/X/. 

for index = 1:36 

index 

y.7.7.7.y.7.7.7.7.7.7//.7.7//.7//.y//.7.7.,///.y. Load image yx/x/x/x/x/x/x/x/x/x/x/x/.y. 

filename=[p  'n'  int2str(index)]; 
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fid=fopen(filename,   'r'); 
[x,cnt]=fread(fid,[2048,1024],'ushort'); 
fclose(fid); 
clear fid cnt filename 
•///.•/.•/.•/.•/.•/.•/.•/.•/.•/.•/.•/.•/.•/.•/.•/.•/.•/.•///.•/.•/.y. orient image %m%%%%mnmmnm 

if sum(x(:,D) < sum(x(: ,1024)) 

x=fliplr(x); 

end '/. (if sum...) 
•/,x=x(:, 1:1024); '/, Include if using 2048x1124 images 

marker = [] ; 

position = 1; 
c = ones(1,1024); 

mamo = x; 

mmmmmmny.ny. Background Mask %m%%%nnm%mn% 

f =  (x < 1500); 

umnnmnnumm. Gradient mi (offset 55)  yx/x/x/x/x/. 

for i = 1:2048 

col = find(f(i,:) == 1); 

if size(col,2) >= 5 
if col (5) < 56 & size (col) > 969 '/, Fill background rows 

j = sum(x(i,l:10)) / 10; 

if j < 1500 

j = 1500; 
end 

x(i,:) = c * j; 

end '/. (if col(5)...) 
if col (5) > (position - 55) '/, Crude tracking of breast edge 

if col (5) < 56 '/, Fill completely bacground rows 

j = sum(x(i,l:10)) / 10; 

if j < 1500 

j - 1500; 

end 

x(i,:) = c * j; 
else '/, Normal gradient fill 

if col(5) < 61 

col(5) = 61; 

end 
begin = sum(x(i,(col(5)-60):(col(5)-51))) / 10; 

final = sum(x(i,l:10)) / 10; 

slope = (final - begin)/(1079-col(5)); 
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count = 0; 

for k = col(5)-55:1024 

x(i,k) = x(i,col(5)-55) + count; 

count = count + slope; 

end '/, for k 

end    7. (if col(5) < 56) 

position = col(5); 

else     '/. Disjoint mask region 

if position < 56 

temp = 21; 
elseif position > 964 

temp = 964; 

else 

temp = position; 

end 

*/, Breast Edge Tracking 

marker = find(f(i,temp-20:temp+60) == 1); 

s = size(marker,2); 

if s > 0 
marker = marker + temp - 21; 

if s < 5     */, New breast edge position 

marker = marker(s); 

else 

marker = marker(5); 

end 

else 
marker = position; 

end 
col = find(f (i,l:marker - 20) == 1); '/, Disjoint mask region 

s = size(col,2); 
if col(s) > marker - 25   */, Fill mostly background row 

j = sum(x(i,l:10)) / 10; 

if j < 1500 

j = 1500; 
end 

x(i,:) = c * j; 

else 

s = s - 5; 

if s > 5 '/, Fill disjoint region 

if col(l) < 26 

slope = 0; 

col(l) - 21; 
x(i,col(l)-20) = sum(x(i,col(s)+16:col(s)+25)) / 10; 

else 

col(l) = 26; 
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begin = sum(x(i,(col(l)-25):(col(l)-16))) / 10; 

final = sum(x(i,col(s)+16:col(s)+25)) / 10; 

col(l) = 21; 

slope = (final - begin)/(col(s) - col(l) + 40); 

end 

count = 0; 

for k = coKD-20 : col(s) + 20 

x(i,k) = x(i,col(l)-20) + count; 

count = count + slope; 

end    */, (for k = . . .) 

end      '/. (if s > 5) 
7, Fill the rest of the masked row 
begin = sum(x(i,(marker-60):(marker-51))) / 10; 

final = sum(x(i,l:10)) / 10; 

slope = (final - begin)/(1079-marker); 

count = 0; 
for k - marker-55:1024 

x(i,k) = x(i,marker-55) + count; 

count = count + slope; 

end    '/, (for k = marker...) 

end       7. (if col(s)...) 

position = marker; 

end 7. (if col(5) >...) 

end 7. (if size (col, 1) >= 5) 
end 7. (for i - 1:2048) 

fprintf(1,'fill complete \n'); 
clear s col position k begin final marker position c slope 

7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7. Do the Dog 7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7. 

m = mean(mean(x)); 

x = x - m; 

x = fil .* (fft2(fftshift(x))); 

y = real(fftshift(ifft2(x))); 

fprintf(1, 'fft Complete \n'); 

clear x 

UUUUnnnn%mXIXk    Clear Top & Bottom Artifacts    VIXVIXVI, 

f(1:100,:) = ones(100,1024); 

f(1949:2048,:) = ones(100,1024); 

f(101:150,1:50) = ones(50,50); 

f(1899:1948,1:50) = ones(50,50); 

y=y .* (1 - f); 

clear f 

7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7. Threshold Dog Image yX/:/X/X/X/X/:a'/:a 

82 



m=max(max(y)); 
y=(y>0.5*m); 

yx/x/x/x/x/x/x/x/x/x/x/.y. Find Regions mmmyx/x/x/x/x/x/x/. 

center = []; 

centers = []; 

regions = [] ; 

area = find_cluster(y); 

m = dilate(y,'dilate') - y; 

edge = find_cluster(m); 

regions = max(max(edge)); 

fa_regions = fa.regions + regions; 

if regions "= [] 

clear m y 
mtmnmmmmm Ratio Test myx/x/x/x/x/x/x/x/x/x/x/. 

for i = 1 : regions; 
[edger, edgec] = find(edge == i); 

if min(edgec) == 1 & max(edgec) < 60 

lab(index.i) = 0; 

else 
box = (max(edger) - min(edger)) * (max(edgec) - min(edgec)); 

mass_perimeter = size(edger.l); 
ratio(index.i) = box / mass_perimeter; 

if ratio(index,i) < 36 & ratio(index,i) > 3 
center(i,i:2) » [mean(edger) mean(edgec)]; 

lab(index.i) = 1; 
elseif ratio(index,i) < 50 & ratio(index,i) > 36 

center(i,l:2) = [mean(edger) mean(edgec)] 

lab(index.i) = 2; 

else 

ratio(index,i) = 0; 

end  */, (if ratio...) 

end    */, (if min(edgec) == 1) 

end       % (for i = 1 : regions) 
fa_ratio = fa_ratio + sum(ratio(index,:)"=0); 

clear edge edgec edger box 

mr/X/X/X/X///X/X/X/X/X/. Index Out Large Masses 7X/X/X/X/X/X/.#/. 

for i = 1 : regions 

if lab(index,i) == 2 
fprintf(l, 'Index 2: Large Mass Detected \n'); 

ratio(index,i) = 0; 

center(i,1:2) 
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center(i,i:2) = zeros(1,2); 

two(index) = two(index) + 1; 

end 

end 

if two(index) ~= 0 
label2_false_alarms = two(index) 

end 

,/.,/.,/.,/.,/.,/.,/.,/.•/.•/.,/.,/.,/.•/.,/.,/.,/.,/.•/.'/.,/.,/.,/.,/. Pick Top 7 Ratio Regions tUtUUW. 

if center "= [] 
temp = size(find(center(:,1) "= 0),1); 

if temp > 7 

temp = 7; 

end 
[tempi,position] = sort(ratio(index,:)); 

tempi = fliplr(tempi); 
all_ratios(index,1:size(tempi,2)) = tempi; 

clear ratio 
ratio(index,1:temp) = tempi(1:temp); 

position = fliplr(position); 

for i = 1 : temp 
centers(i,l) = center(position(i),1); 

centers(i,2) = center(position(i),2); 

end •/, (for 1 = 1: temp) 

clear center 
top_7_ratios = ratio(index,1:temp) 

clear center top_7_ratios 
centers = centers(1:temp,:); 

centers 
fprintf(l,'Region Identification Complete \n'); 

%%%%%%%%%%%%%%%%%%%%%%%%   Extract the Regions for Tests %%%%%%%% 

temp = 0; 
hits = size(centers,1); 

fa_7 = fa_7 + hits; 

for i = 1 : hits 

if centers(i,2) < 70 
roi = mamo((centers(i,l)-69):(centers(i,l)+70) , 1:140); 

elseif centers(i,2) > 954 
roi ■ mamo((centers(i,l)-69):(centers(i,l)+70) , 955:1024); 

else 
roi = mamo((centers(i,l)-69):(centers(i,l)+70) , 

(centers(i,2)-69):(centers(i,2)+70)); 
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end 

%%%%%%%%%%%%%%%%%%n%m   Histogram-Based Morphing    tnVkUWXk 

t = roi; 

[a,b]=hgram(t); 

a=flipud(a); 

b=flipud(b); 

j-i; 
count=0; 

position=0; 

while count <=3000 

count = count + b(j); 

j = j + i; 
end 

t=(t>=a(j)); 

t=erode(t,'erode'); 

reg = find_cluster(t); 

number = max(max(reg)); 

for j = 1 : number 

[r,c]  = find(reg == j); 
if min(min(r))<=2  I  min(min(c))<=2  I  max(max(r))>=139  I  max(max(c))>=139 

t = t -  (reg==j); 
end 

end 
t=dilate(t,'dilate',2); 

reg = find_cluster(t); 

number = max(max(reg)); 

for j = 1 : number 

[r,c]  = find(reg == j); 
if size(r.l)  < 1000 

t = t -  (reg==j); 
end 

end 
t = bwmorph(t,'close',3); 

'/.'/.,/.,/.,/.•/.,/.,/.'/.,/.,/.,/.,/.,/.•/.•/.,/.,/.,/.,/.,/.,/.•/.•/. Morphed Area Test y//X/X/X/X/X/X/X/.*/.n 

roiarea(index.i) = sum(sum(t)); 
if roiarea(index,i) < 1000 I roiarea(index.i) > 3500 

roiarea(index,i) = 0; 

else 

UWUnUtnninnVM   Morphed-Mask/Real ROI Contrast Test    % 
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ave_mass = sum(sum(roi .* t)) / roiarea(index.i)5 

ave_roi = mean(mean(roi)); 

con(index,i) = ave_mass / ave.roi; 

if con(index.i) <= 1.05 I con(index.i) >= 1.13 

con(index,i) = 0; 

else 

nUnUnUmnnnm.   Morphed Mask Circularity Test   %%m%% 

mask = zeros(140,140); 

radius = sqrt(roiarea(index,i) / pi); 

[r,c] = find(t == 1); 

r = round(mean(r)); 

c = round(mean(c)); 

for m = 1:140 

for n = 1:140 
if norm([r c] - [m n]) <= radius 

mask(m.n) = 1; 

end 

end 

end 
circle(index,i) = sum(sum(mask .* t)) / sum(sum(mask)); 

if circle(index,i) <= 0.58 

circle(index,i) = 0; 

else 

temp = 1; 

end  7, (if size. . .) 

end    7. (if con.. .) 

end       7. (if area.. .) 
end 7. (for i=l:hits(index)) 

7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.   Pick Top 4 Circular Regions 'aVIXVaVI. 

if temp == 1 
temp = size(find(circle(index,:) ~= 0),2); 

if temp > 4 

temp =4; 

end 
[tempi,position] = sort(circle(index,:)); 

tempi = fliplr(templ); 

circles(index,1:temp) = tempi(1:temp); 

position = fliplr(position); 

for i = 1 : temp 
center(i,l) = centers(position(i),1); 

center(i,2) = centers(position(i),2); 
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ratios(index,i) = fliplr(ratio(index,position(i))); 

cons(index.i) = fliplr(con(index,position(i))); 

roiareas(index,i) = fliplr(roiarea(index,position(i))); 

end    */, (for 1 = 1: temp) 

if temp < 4 
center(temp+1:4,1:2) = ones(4-temp,2); 

end 

area(l,l) = -1; 
for i = 1 : 4 

id(i) = area(center(i,l),center(i,2)); 

end 
area = area==id(l) I area==id(2) I area==id(3) I area==id(4); 

area(i,l) = 0; 

clear ratio centers 
final_ratios = ratios(index,1:temp) 

centers = center(1:temp,:); 

centers 

,/.,/.,/.'/.'/.'/.,/.,/.7.7.,/.,/.,/.,/.,/.'/.'/.'/.'/.,/.,/.,/.,/.'/. ROI Extraction myX///X/X/X/X/X/X/X/.'/. 

rcount = 1; 

for i = 1 : temp 
if centers(i,2) < 70 

roi = mamo((centers(i,l)-69):(centers(i,l)+70) , 1:140); 

elseif centers(i,2) > 954 
roi = mamo((centers(i,l)-69):(centers(i,l)+70) , 955:1024); 

else 
roi = mamo((centers(i,i)-69):(centers(i,l)+70) , 

(centers(i,2)-69):(centers(i,2)+70)); 

end 
filename = ['roi' int2str(index) '.' int2str(rcount) ]; 

rcount = rcount + 1; 

filename = [p filename]; 
fid=fopen(filename, 'w+'); 

fwrite(fid,roi,'ushort'); 

fclose(fid); 

end    */, (for i = 1 : temp) 

else 

correct(index) = 0; 

area = 0; 

centers = [] ; 
end '/, (if temp == i) 

else 

correct(index) = 0; 

area = 0; 
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centers = [] ; 
end 7,  (if center "= []) 

else 

correct(index) = 0; 

area = 0; 

centers = [] ; 

end '/• (if regions ~= []) 

[i,j,s] = find(area); 

[m,n] = size(area); 
area = sparse(i,j,s,m,n); 

eval(['save image' int2str(index) ' area ratios centers correct 

roiarea roiareas con cons circle circles all.ratios']); 

clear si s2 s3 s4 s5 area i j 

end    '/, (for index = 1:36) 

fa_regions = fa_regions-sum(correct~=0) 

fa_ratio = fa_ratio-sum(correct~=0) 

fa_top_7 = fa_7-sum(correct~=0) 
fa_area = sum(sum(roiarea~=0))-sum(correct~=0) 

fa_contrast = s\im(sum(con"=0))-sum(correct~=0) 

fa_final = sum(sum(circles~=0))-sum(correct~=0) 

label2_false_alarms = sum(two) 



D.2   Laws Features Extraction Code (laws.m) 

'/, Feeds all the rois through the Laws filters for the 36 images 
7, Adds area, circularity, contrast, and ratio features 

1 = [14 6 4 l]; 
s = [-1 0 2 0 -1] 
r = [1 ■ -4 6 -4 1] 
e = [-1 -2 0 2 1] 
w = [-1 2 0 -2 1] 

1515 = 1 * 1; 
15s5 = 1 * s; 
15r5 = 1 * r; 
15e5 = 1 * e; 
15w5 = 1 * w; 
s515 = S * 1; 
s5s5 = S * s; 
s5r5 = S * r; 
s5e5 = S * e; 
s5w5 = S * w; 
r515 = r * 1; 
r5s5 = r * s; 
r5r5 = r * r; 
r5e5 = r * e; 
r5w5 = r * w; 
e515 = e * 1; 
e5s5 = e * s; 
e5r5 = e * r; 
e5e5 = e * e; 
e5w5 = e * w; 
w515 = w * 1; 
w5s5 = w * s; 
w5r5 = w * r; 
w5e5 = w * e; 
w5w5 = w * w; 

'/, Kegelmeyer feature 

'/, Kegelmeyer feature 

'/, Kegelmeyer feature 

'/, Kegelmeyer feature 

countm = 1; 
countb = 1; 

for i = 1 : 36 
i 

eval(['load image' int2str(i)]) 
s = size(centers,1); 
area = full(area); 
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count = 1; 

%mmmmmm%UVt.   Extract ROI Mask    %%%%%%%%%%%%%%%%%%%% 

for j = 1 : s 
if centers(j,2) < 70 

roi = area((centers(j,l)-67):(centers(j,l)+68) , 1:136); 

n = area(centers(j,l),centers(j,2)); 

elseif centers(j,2) > 954 
roi = area((centers(j,l)-67):(centers(j,l)+68) , 889:1024); 

n ■ area(centers(j,l),centers(j,2)); 
else 

roi = area((centers(j,l)-67):(centers(j,l)+68) , 

(centers(j,2)-67):(centers(j,2)+68)); 
n = area(centers(j,l),centers(j,2)); 

end 

roi = (roi==n); 
roi = dilate(roi,'dilate',2); 

a = sum(sum(roi)); 

%%%m%%m%%%%%%%mm Load MI mmmmnmxxxxmmx 

filename =  ['roi'  int2str(i)]; 
end 
p='../bdata/'; 
filename=[p filename]; 
fid=fopen(filename, 'r'); 
[x,cnt]=fread(fid,[140,140],'ushort'); 
fclose(fid); 

sum(sum(abs(conv2(x,1515, 

sum(sum(abs(conv2(x,15s5, 

sum(sum(abs(conv2(x,15r5, 

sum(sum(abs(conv2(x,15e5, 

sum(sum(abs(conv2(x,15w5, 

sum(sum(abs(conv2(x,s515, 

sum(sum(abs(conv2(x,s5s5, 

sum(sum(abs(conv2(x,s5r5, 

sum(sum(abs(conv2(x,s5e5, 

sum(sum(abs(conv2(x,s5w5 
sum(sum(abs(conv2(x,r515 

sum(sum(abs(conv2(x,r5s5 

sum(sum(abs(conv2(x,r5r5 

■■  sum(sum(abs(conv2(x,r5e5 
■■  sum(sum(abs(conv2(x,r5w5 
• sum(sum(abs(conv2(x,e515 

m(countm,l) ; 

m(coinitm,2) ; 

m(countm,3) ; 

m(countm,4) : 

m(countm,5) ; 

m(countm,6) ; 

m(countm,7) 

m(countm,8) 

m(countm,9) 

m(countm,10) 

m(countm,ll) 

m(countm,12) 

m(countm,13) 

m(countm,14) 

m(countm,15) 

m(countm,16) 

valid') 

valid') 

valid') 

valid') 

valid') 

valid') 

valid') 

valid') 

valid') 

'valid' 

'valid' 

'valid' 

'valid' 

'valid' 

'valid' 

'valid' 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 

.* roi))/ a; 
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,e5s5, 

,e5r5, 

,e5e5, 

,e5w5, 

,w515, 

,w5s5, 

,w5r5, 

,w5e5, 

,w5w5, 

'valid') 

'valid') 

'valid') 

'valid') 

'valid') 

'valid') 

'valid') 

'valid') 

'valid') 

.* roi) 

.* roi) 

.* roi) 

.* roi) 

.* roi) 

.* roi) 

.* roi) 

. * roi) 

.* roi) 

)/ a; 

)/ a; 

)/ a; 

)/ a; 

)/ a; 

)/ a; 

)/ a; 

)/ a; 

)/ a; 

m(countm,17) = sum(sum(abs(conv2(x 

m(countm,18) = sum(sum(abs(conv2(x 

m(countm,19) = sum(sum(abs(conv2(x 

m(countm,20) = sum(sum(abs(conv2(x 

m(countm,21) = sum(sum(abs(conv2(x 

m(countm,22) = sum(sum(abs(conv2(x 

m(countm,23) = sum(sum(abs(conv2(x 

m(countm,24) = sum(sum(abs(conv2(x 

m(countm,25) = sum(sum(abs(conv2(x 

m(countm,26) = roiareas(i.j); 

m(countm,27) = circles(i,j); 

m(countm,28) = cons(i.j); 

m(countm,29) = ratios(i.j); 

countm = countm + 1; 

end    '/. (for j-l:s) 

end       7. (for i=l:36) 

lbest=[m(:,23) m(:,13) m(:,7) m(:,9) m(:,17) m(:,2) m(:,20) m(:,4) m(:,26)]; 

save laws6 lbest -ascii 

91 



D.3   Imbalanced Training Set Neural Network Code (imb.m) 

Imbalanced Training Set Neural Network Code 

single hidden layer, sigmoid activation function, 

single output neural net, training in batch mode, 

derivative-based feature saliency. 
[err_cO,err_cl,Wl,W2]=seltrn(data,HL,maxepochs,lr,clamp); 

INPUT: 
data: 1st col class, remaining cols features, 

# of row = # of samples 

HL: number of desired hidden nodes 

maxepochs: maximum number of epochs to train 

lr:  learning rate 
clamp: clamp output > 1-clamp to 1-clamp or <clamp to clamp 

OUTPUT: 
err_cO: error for class 0 for each epoch 
err_cl: error for class 1 for each epoch 

Wl: final weights for input to hidden layer 
W2: final weights for hidden layer to output node 

£This program will train a neural net for an imbalanced training set 

£with two classes with a selectable number of hidden nodes and a 

^.single output node. 

function [dzdx,err_cO,err_cl,Wl,W2]=seltrn(data,HL,maxepochs,lr,clamp) 

randCseed',sum(100*clock)); */,rand seed value 

[n,I]=size(data); 

1=1-1; 

ave=mean(data(: ,2:1+1)) ; '/, normalize data 

dev=std(data(:,2:1+1)); 

average=ones(n,l) * ave; 

sigma=ones(n,l) * dev; 
data(:,2:I+l)=(data(:,2:I+l)-average)./sigma; 

data=data'; 

epoch_err_cO = 1; 

while epoch_err_cO > 0.20 

'/, initialize weights in the net 

92 



Wl=rand(HL,I+i)-0.5;  '/.[HL by 1+1] 

W2=rand(l,HL+l)-0.5; '/.[l by HL+1] 

err_cO=[] ; 

err_cl=[] ; 

epoch=0; 

dummyl=l; 

while epoch<maxepochs 

'/.Initialize variables 

mseO= [] ; 
msel=[] ; 
index=randperm(n); 

countO=l; 

count1=1; 

zl_cO=[] 

zi_cl=[] 

z2_c0=[] 

z2_cl=[] 

X_cO=[]; 

X_cl=[]; 
n0=0; 

nl=0; 

for i=l:n; 
d(i)=data(l,index(i)); '/, desired output 

X(:,i)=[data(2:I+l,index(i)); 1]; '/.feature vector (I+i by n) 

'/, compute activation fuctions 

zl(:,i)=l./(l+exp(-Wl * X(:,i))); '/.hidden layer (HL by n) 

z2(l,i)=l./(i+exp(-W2 * [zl( : ,i) ; 1] )) ; '/.output layer (i by n) 

'/, clamp output values 

if z2(l,i)>(l-clamp) 

z2(l,i)=l-clamp; 

elseif z2(l,i)<clamp 

z2(l,i)=clamp; 

else 

z2(l,i)=z2(l,i); 

end 

'/, divide input, hidden and output layer results by class 
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if d(i)==l 
X_cl=[X_cl X(:,i)]; 

zl_cl=[zl_cl zl(:,i)]; 

z2_cl=[z2_cl z2(i,i)]; 

nl=nl+l; 

else 
X_cO=[X_cO X(:,i)]; 

zl_cO=[zl_cO zl(:,i)]; 

z2_c0=[z2_c0 z2(l,i)]; 

nO=nO+l; 

end 
end; '/, all train samples through the net 

*/, find first derivative of hidden and output layers 

dzl_cO=zl_cO.*(l-zl_cO) 

dz2_c0=z2_c0.*(1-Z2_C0) 

dzi_cl=zi_ci.*(i-zl_ci) 

dz2_cl=z2_cl.*(l-z2_cl) 

7, derivative of hidden layer (HL by nO) 

'/, derivative of output layer (i by nO) 

'/, derivative of hidden layer (HL by nl) 

'/, derivative of output layer (1 by nl) 

dout_c0=dz2_c0 .* (clamp-z2_c0); '/, (i by nO) 

temp_cO=W2' * dout.cO; '/, (HL+i by nO) 
dhl.cO » dzi_cO .* temp_cO(l:HL,:); '/. (HL by nO) 

dout_cl=dz2_cl .* (i-clamp-z2_ci); 7. (1 by ni) 

temp_cl=W2' * dout.cl; 7, (HL+1 by nl) 
dhl_cl = dzl.cl .* temp_cl(l:HL,:); 7. (HL by nl) 

7, calculate gradients for each class 

GE_Wl_cO=dhl_cO * X_cO'; 
GE_W2_cO=dout_cO * [zl_cO;ones(l,nO)]'; 

GE_Wl_cl=dhl_cl * X_cl'; 
GE_W2_ci=dout_cl * [zl_cl;ones(l,nl)]'; 

7. find unit vectors for each gradient 

unit_GE_Wl_cO=GE_Wl_cO/sqrt(sum(sum(GE_Wl_cO.~2))); 

unit_GE_Wl_cl=GE_Wl_cl/sqrt(sum(sum(GE_Wl_cl."2))); 

unit_GE_W2_cO=GE_W2_cO/sqrt(sum(GE_W2_cO."2)); 

unit_GE_W2_cl=GE_W2_cl/sqrt(sum(GE_W2_cl.~2)); 

7. find bisecting angle between the class GE vectors 

ang_GE_Wl=(unit_GE_Wl_cO + unit_GE_Wl_cl)/2; 

ang_GE_W2=(unit_GE_W2_cO + unit_GE_W2_cl)/2; 
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'/, calculate magnitude of GE vectors 

mag_GE_Wl=sqrt(sum(sum((GE_Wl_cO + GE_Wl_cl)."2))); 

mag_GE_W2=sqrt(sum((GE_W2_cO + GE_W2_cl).~2)); 

'/, create new GE vectors 

GE_Wi=mag_GE_Wl*ang_GE_Wl; 

GE_W2=mag_GE_W2*ang_GE_W2; 

7, update weights with new backprop 

Wl=Wl+lr*GE_Wl; 

W2=W2+lr*GE_W2; 

*/, calculate the mse for each class 

for i=l:n 

if d(i)==0 
mse0(count0)=(d(i)-z2(i))~2; 

countO=countO+l; 

else 
msei(countl)=(d(i)-z2(i))~2; 

countl=count1+1; 

end 

end 

%  compute epoch error for each class 

epoch_err_cO=mean(mseO); 

epoch_err_cl=mean(msel); 

if epoch_err_cO >= 0.20 

break 

end 
err_cO=[err_cO epoch_err_cO]; 
err_cl=[err_cl epoch_err_cl]; 
epoch=epoch+l; 

fprintf(l,' Epoch '/,d ... ',epoch); 
fprintf(l, 'Average mse = */,6.3f    7,6.3f\n', epoch_err_cO, epoch_err_cl); 

end 7, (while epoch<maxepochs) 

end 7. (while epoch_err_cO > 0.20) 

7. Feature Saliency 

dzdx=zeros(l,I); 
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for i=i:n 

zl = 1 ./ (1 + exp(-Wl * X(:,i))); 

z2 - 1 ./ (1 + exp(-W2 * [zl; 1])); 

fprimel = zl .* (1-zl); 

fprime2 = z2 .* (l-z2); 

'/, dzdx contains each feature's saliency for all training samples 

dzdxl = abs((Wl(:,l:D' * (((W2(:,1:HL)' * fprime2) .* fprimel)))'); 

dzdx = dzdx + dzdxl; 

end */, (for i=l:n) 

dzdx=dzdx/max(dzdx); 

dzdx 

'/, Testing 

confusion = zeros(2,2); 

for i=l:n 

zl = 1 ./ (1 + exp(-Wl * X(:,i))); 

z2 - 1 ./ (1 + exp(-W2 * [zl; 1])); 
if z2>=0.5 

guess = 2; 

else 

guess = 1; 

end 
d=data(l,index(i)); 

confusion(d+l, guess) = confusion(d+l, guess) + 1; 

end '/, (for i = l:n) 

confusion 

classify=trace(confusion)/n; 

classify 
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